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Strategic Behavior Prediction: Introduction

e Strategic behavior: Human behavior in strategic environments:
® Bidding in auctions.
® Offering in bargainings.

® Actions in card/board games.
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Strategic Behavior Prediction: Conventional Approach

® Game theory approach

® Steps: (i) equilibrium assumption; (ii) predict behavior using game
theory models.
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Strategic Behavior Prediction: Conventional Approach

® Game theory approach

® Steps: (i) equilibrium assumption; (ii) predict behavior using game
theory models.

® Cons: (i) strong assumptions; (ii) inaccurate prediction.
¢ Machine learning approach

® Steps: (i) train machine learning models on historical behavior
data; (ii) predict behavior with the trained models.

® Pros: (i) fewer assumptions (ii) accurate prediction.

® Cons: the domain shift problem.

— Training
=== Test

Output = f(Input)

Mapping

Glauner et al. (2018)
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Strategic Behavior Prediction: Motivation

¢ Due to bounded rationalities, a gap exists between the
game-theoretic prediction and real human behavior.

Game theory model
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Strategic Behavior Prediction: Motivation

¢ Due to bounded rationalities, a gap exists between the
game-theoretic prediction and real human behavior.

® The gap can be highly correlated with the strategic environment.

|Game theory modell | Strategic environment | |Human behavior

—m e

|Machine learning methodl
Domain knowledge [ i Prediction |

e To bridge the gap:
® Take the game theory models as source of domain knowledge.

® Use machine learning to learn the mapping from the domain
knowledge and strategic environment to real human behavior.
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Penny Auction

¢ Auctions we usually see (e.g., ascending price auction):
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Penny Auction

¢ In penny auctions:

® g: buying price

Initially 1st round
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Penny Auction

¢ In penny auctions:
® g: buying price
® b: bid fee

Initially 1st round
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Penny Auction

¢ In penny auctions:
® g: buying price
® b: bid fee

® (: bid increment
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Penny Auction

¢ In penny auctions:
® g: buying price
® b: bid fee
® d: bid increment

® n: duration

Inltlally 1st round 2nd round 3rd round 4th round
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Duration in Penny Auction

Initially 1st round 2nd round 3rd round 4th round n=4
(X)
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e What we want to predict: DURATION.

e Duration is important because it relates to:
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e What we want to predict: DURATION.
e Duration is important because it relates to:

® buying price (e.g., 4-d)
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e What we want to predict: DURATION.

e Duration is important because it relates to:
® buying price (e.g., 4-d)
® overall payment (e.g.,4-b+4-d)

® strategic behavior

Yujia Wang, Haoran Yu Predicting Real-World Penny Auction Durations by Integrating Game Theory and Machine Learning



PRC a
O00®000

Duration in Penny Auction

Initially 1st round 2nd round 3rd round 4th round n=4
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e What we want to predict: DURATION.

e Duration is important because it relates to:
® buying price (e.g., 4-d)
® overall payment (e.g.,4-b+4-d)
® strategic behavior

® Bidders choose between bidding or not bidding.
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Duration in Penny Auction

Initially 1st round 2nd round 3rd round 4th round n=4
(X)

SED V31D SEED - SEED  BEED S
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@q-q+d @q-q+d @q-q+d @q-q+d q=4d

e What we want to predict: DURATION.
e Duration is important because it relates to:
® buying price (e.g., 4-d)
® overall payment (e.g.,4-b+4-d)
® strategic behavior
® Bidders choose between bidding or not bidding.

® Duration is the result of bidders’ strategic behavior.
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Problem Formulation

¢ Auction configuration: Penny auctions are categorized by the
configuration s; = {ry,vi, bi,d;},si € S.

® . data index
® b;: bid fee

® (;: bid increment
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Duration in Penny Auction

e What we want to predict: DURATION.
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PROBLEM
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Duration in Penny Auction

e What we want to predict: DURATION.

® Penny auctions with the same configuration.

Reign Olympia - Blue / Silver Reign Olympia - Blue / Silver
By it Now price: 5700 By It Now price: 700
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PROBLEM
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Problem Formulation

¢ Auction configuration: Penny auctions are categorized by the
configuration s; = {r;,v;, b;,di},s; € S.

® i: data index

® b;: bid fee

® (;: bid increment

® r;: product

® y;: retail price

® S: the set of all auction configurations

¢ Duration distribution: The probability that an auction ends after
n rounds is p;, for eachs; € S.

Auction Duration Prediction Problem

Given s;, how to predict p; .

Yujia Wang, Haoran Yu Predicting Real-World Penny Auction Durations by Integrating Game Theory and Machine Learning



© SOLUTION

Predicting Re orld Penny Auction Durations by Integrating Game Theory and Machine Learning



SOLUTION
O®00000

ADAPT

¢ A three-stage framework: Auction Duration Prediction (ADAPT)

¢ Integration of game theory and machine learning.

Stage I: Product Embedding
Pre-Trained

7
> Transformer v
S | Embedded Description \ \
\ o

Auction Configs &

ﬂ [1,v.bd] /

Multi-Branch Duration
vb,d MDN Distribution lﬁ\
& GT1 GrZl (B9 g,

(PHETLy I':J F Stage III:

Knowledes Duration Distribution Prediction

Stage II: Domain Knowledge Extraction
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Stage I: Product Embedding

Stage I: Product Embedding

r Pre-Trained
> Transformer
Auction Configs \ — Embedded Description \
Ivbd. & o

e r: product (e.g., “Apple iPhone 3G 16GB (White)”).

¢ The pre-trained Sentence Transformer Reimers and Gurevych
(2019) encodes r into a fixed-length embedding e.

Yujia Wang, Haoran Yu Predicting Real-World Penny Auction Durations by Integrating Game Theory and Machine Learning



Stage I: Product Embedding

Stage I: Product Embedding

r Pre-Trained

> Transformer
Auction Configs —
[1v,bd] &

Embedded Description N
o

e r: product (e.g., “Apple iPhone 3G 16GB (White)”).

¢ The pre-trained Sentence Transformer Reimers and Gurevych
(2019) encodes r into a fixed-length embedding e.

e “Context-aware”.
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Stage II: Domain Knowledge Extraction

Auction Configs e \
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Domain
| Knowledge

Stage II: Domain Knowledge Extraction
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Stage II: Domain Knowledge Extraction

Auction Configs e
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Stage II: Domain Knowledge Extraction 'M

¢ Domain knowledge: Distribution prediction p;, from different
game theory models (e.g., GT1, GT2, ...).

® p;n: The probability that an auction ends after n rounds.
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¢ Domain knowledge: Distribution prediction p;, from different
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Stage II: Domain Knowledge Extraction
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Stage II: Domain Knowledge Extraction '\w

¢ Domain knowledge: Distribution prediction p;, from different
game theory models (e.g., GT1, GT2, ...).

® p;n: The probability that an auction ends after n rounds.
¢ To obtain p; ,
® When to end: After n rounds, no bidder would like to bid.

® u;.: The probability that at least one bidder bids after t — 1 rounds.
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Stage II: Domain Knowledge Extraction

Auction Configs &

\ [rvbd] /
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Domain -
\ Knowledge Iﬁ
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Stage II: Domain Knowledge Extraction

¢ Domain knowledge: Distribution prediction p; , from different
game theory models (e.g., GT1, GT2, ...).

® pin: The probability that an auction ends after n rounds.
¢ To obtain p; ,,
® When to end: After n rounds, no bidder would like to bid.
® u;,: The probability that at least one bidder bids after t — 1 rounds.
Pin = (1 — tint1) - oy 1)
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Stage II: Domain Knowledge Extraction

e To obtain p; ,, we need u; ;:

Pin=(1—Uint1) I qui, €9

® u;.: The probability that at least one bidder bids after t — 1 rounds.
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e To obtain p; ,, we need u; ;:

Pin=(1—Uint1) I qui, €9

® u;.: The probability that at least one bidder bids after t — 1 rounds.
¢ To obtain u;,, we turn to game theory models.

¢ Equilibrium condition: A bidder is indifferent between bidding
or not bidding, when these two actions have the same utility.
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Stage II: Domain Knowledge Extraction

e To obtain p; ,, we need u; ;:

Pin=(1—Uint1) I qui, €9

® u;.: The probability that at least one bidder bids after t — 1 rounds.
¢ To obtain u;,, we turn to game theory models.

¢ Equilibrium condition: A bidder is indifferent between bidding
or not bidding, when these two actions have the same utility.

e Example: game theory model based on Expected Utility
Theory (EUT):

(I—uje) - vi—(t—=1)-di=b))+ uy;-(=b;)) = 0 )
ﬁ/—/ V' .
Bidding and winning Bidding and losing Not bidding

® y;: retail price
® b;: bid fee

® d:: bid increment
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Stage III: Duration Distribution Prediction

Embedded Description )
\ o

Multi-Branch Duration
MDN \ Distribution lﬁ‘
 \—

Domain .
Knowledge I':J Stage‘III.- forrr] ]
\—— Duration Distribution Prediction

e Multi-Branch MDN: Multi-Branch Mixture Density Network.
® Input: Output from Stage I and Stage II.
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Stage III: Duration Distribution Prediction

Embedded Description )
\ o

Multi-Branch Duration
MDN \ Distribution lﬁ
A

Domain .
Knowledge I':J Stage‘III.- forrr] ]
\—— Duration Distribution Prediction

e Multi-Branch MDN: Multi-Branch Mixture Density Network.
® Input: Output from Stage I and Stage II.
® Qutput: Prediction of the auction duration distribution.

® Mixture density network Bishop (1994) is able to output a distribution.
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Stage III: Duration Distribution Prediction

Embedded Description N
\ o

Multi-Branch Duration
MDN \ Distribution lﬁ,
e \—
Domain o | .
Knowledge I'-_" Stage.III.' Prpry ]
e/ Duration Distribution Prediction

¢ Loss function: Negative log-likelihood.

1 A
Lossyp—MDN = — Z i Z log(Bin), (3)
it NGl£0 7T neN;
® n: actual auction duration.
® i: index.
® pin: prediction from ADAPT.

® A;: the set of actual auction durations under configuration s;.
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Experimental Settings: Comparison Methods

¢ To evaluate auction duration prediction performance, we
compare:

® Qur method (ADAPT).
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Experimental Settings: Comparison Methods

¢ To evaluate auction duration prediction performance, we
compare:

® Qur method (ADAPT).
® Game theory models (GT1, GT2, GT3).
® Machine learning-only method (EMB+MDN).
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Experimental Settings: Comparison Methods

¢ To evaluate auction duration prediction performance, we
compare:

® Qur method (ADAPT).
® Game theory models (GT1, GT2, GT3).
® Machine learning-only method (EMB+MDN).

® Other combinations of game theory and machine learning
(GT1+MDN, GT2+MDN, GT1+EMB+MDN, GT2+EMB+MDN,
GT1+GT2+MDN).
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Experimental Settings: Comparison Methods

¢ To evaluate auction duration prediction performance, we
compare:

® Qur method (ADAPT).
® Game theory models (GT1, GT2, GT3).
® Machine learning-only method (EMB+MDN).

® Other combinations of game theory and machine learning
(GT1+MDN, GT2+MDN, GT1+EMB+MDN, GT2+EMB+MDN,
GT1+GT2+MDN).

® ADAPT = GT1+GT2+EMD+MDN.
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Experimental Settings: Datasets

¢ Synthetic dataset: 1,276 auction configurations.
¢ Real dataset: 115,831 records, 1,276 auction configurations.

® Collected by Byers et al. (2010); Augenblick (2016) from online
penny auction websites.
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Results: Auction Duration Prediction

¢ Data: Synthetic testing data (10% of all synthetic data).

® Metric: NLL averaged over 8 runs.
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Results: Auction Duration Prediction

¢ Data: Real testing data (10% of all real data).

® Metric: NLL averaged over 8 runs.

GT1 GT2 GT3  GT1+MDN GT2+MDN EMB+MDN GT1+EMB+MDN GT2+EMB+MDN GT1+GT2+MDN ADAPT

Avg 6.795 6.858 6.851 6.626 6.684 6.728 6.454 6.462 6.416 6.344

NIL std 0.140 0.208 0.145  0.409 0.283 0.113 0.103 0.111 0.075 0.061
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Results: Auction Duration Prediction

e Data: Real testing data (10% of all real data).

® Metric: NLL & KL-divergence averaged over 8 runs.

GT1 GT2 GT3  GT1+MDN GT2+MDN EMB+MDN GT1+EMB+MDN GT2+EMB+MDN GT1+GT2+MDN ADAPT

NLL Avg 6.795 6.858 6.851 6.626 6.684 6.728 6.454 6.462 6.416 6.344
Std 0.140 0.208 0.145 0.409 0.283 0.113 0.103 0.111 0.075 0.061

KL-D Avg 3.254 3.564 3.541 2.928 3.224 3.203 2.848 2.967 2.911 2.836
Std  0.128 0.209 0.463 0.084 0.259 0.086 0.076 0.143 0.123 0.075
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Results: Auction Duration Prediction

e Example in real testing data:

6, 3 ==Histogran —GTL (3.767)  — GTLHDN (3.796)
_ - —GT2 (4.664) GT2+YDN (3.829)
ADAPT(NLL:3.203) 13 (3!7g9) EMB+MON (4.840)

©
N

—GT1+EMBHDN (3.646)
— GT2+EMBHDN (3.536)
—GT14GT2+4DN (3.662)

A3TT19RqOUd
©
s

9 13131517192123 2527 293133353739 41
Duration
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: Actual auction duration (normalized).

® ADAPT: Prediction with the lowest NLL.

0.06- == Histogran = (7453 —gaon (7,339
— - —GT2 (7.192) GT2+MDN (8.416)
ADAPT(NLL:6.956) __cr3 (7.512) EMBHDN (7.427)

——GT1+EMBHDN (7.192)
—GT2+EMBHDN (7.114)
——GT1+GT2+MDN (7.352)

——

21 71121171221271321 371421 471 521 571 621 671 721 771 821 871
Duration
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Results: Prediction Under Large Domain Shifts

Training & Validation 4 {— |Spiit by Bid Fee!
Testing Data { H__T______}———
—
ok 1k 2k sk 6k

3k 4k
Durations
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Results: Prediction Under Large Domain Shifts

¢ Split by bid fee:
® Real testing data: auctions with the bid fee of 0.01.
® Real training & validation data: the remaining.

Training & Validation 4 {— |Spiit by Bid Fee!
Testing Data { H__T______}———
—

T
0k 1k 2k 3k 4k 5k 6k
Durations
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Results: Prediction Under Large Domain Shifts

¢ Split by bid fee:
® Real testing data: auctions with the bid fee of 0.01.

® Real training & validation data: the remaining.

11.39¢11.142 17 _gy3iBid Fee!
10.69
Training&VaI\dationj O TSIt by 8id Fee! 'E 9.99 5.21 9.759
Testing Data 4 H_L_______}——— - 2}
ok 1k 2k 3k 4k sk 6k ~ 9.29 9.032

Durations 8.
850 213 oV v %j_
4
AL c:e‘\,\“a:g\gﬂw@ R
G
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CONCLUSION

©® CONCLUSION
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Contribution

¢ Design a framework to predict the auction duration under
different auction configurations.
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CONCLUSION
(o] ]

Contribution

® Design a framework to predict the auction duration under
different auction configurations.

® Propose a approach to predict strategic behavior combining the
strengths of game theory and machine learning.

|Game theory modell | Strategic environment | |Human behavior

| Machine learning methodl

Domain knowledge L i Prediction
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Supplement: InferNet

¢ A three-stage framework: Auction Duration Prediction (ADAPT)

sg========== >
Data flow in Stage I

Stage I: Product Embedding /
] Data flow in Stage II |
\

r Pre-Trained
> Transformer

Auction Configs ==
\ [rvbd] e e Data :
:,& oy Model
InferNet-1 InferNet-2 -
G, L L, Multi-Branch Duration |+
. N2 MDN Distribution
mor GT1 GT2 \w—

Domain

Knowledge Stage III:

Stage II: Domain Knowledge Extraction Duration Distribution Prediction
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Supplement: Model Parameter Inference

e Data: Synthetic testing data and real testing data (10% of all).
® Model: GT2 with parameters inferred by different methods.

® Metric: NLLs averaged over 8 runs.

SA-Avg SA-Unified InferNet

) Avg 7938 6588  5.947
SyntheticData ¢ 7' 969 0565  0.173
Avg 7.492  7.421  6.858

Real Data std 0.133 0355  0.208
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