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Strategic Behavior Prediction: Introduction

• Strategic behavior: Human behavior in strategic environments:

• Bidding in auctions.

• Offering in bargainings.

• Actions in card/board games.
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Strategic Behavior Prediction: Conventional Approach

• Game theory approach

• Steps: (i) equilibrium assumption; (ii) predict behavior using game
theory models.

• Cons: (i) strong assumptions; (ii) inaccurate prediction.

• Machine learning approach

• Steps: (i) train machine learning models on historical behavior
data; (ii) predict behavior with the trained models.

• Pros: (i) fewer assumptions (ii) accurate prediction.

• Cons: the domain shift problem.
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Output = f(Input)
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Strategic Behavior Prediction: Motivation

• Due to bounded rationalities, a gap exists between the
game-theoretic prediction and real human behavior.

• The gap can be highly correlated with the strategic environment.

Human behaviorGame theory modelGame theory model

• To bridge the gap:

• Take the game theory models as source of domain knowledge.

• Use machine learning to learn the mapping from the domain
knowledge and strategic environment to real human behavior.
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Penny Auction

• Auctions we usually see (e.g., ascending price auction):

Initially

Initially

… ...

Initially

… ...

End
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Penny Auction

• In penny auctions:

• q: buying price

• b: bid fee

• d: bid increment

• n: duration

Initially

AA BB CCA B CA B C
q=0 q=0 q=0 
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Penny Auction

• In penny auctions:

• q: buying price

• b: bid fee

• d: bid increment

• n: duration

Initially 1st round

B 
bids
B 

bids

2nd round

AA BB CCA B CA B C AA BB CCA B CA B C AA BB CCA B CA B C
q=0 q=0 q=0 

A 
bids
A 

bids
B pays b
q ← q + d
B pays b
q ← q + d

A pays b
q ← q + d
A pays b
q ← q + d

Yujia Wang, Haoran Yu Predicting Real-World Penny Auction Durations by Integrating Game Theory and Machine Learning 8 / 33



BACKGROUND PROBLEM SOLUTION EXPERIMENTS CONCLUSION References

Penny Auction

• In penny auctions:

• q: buying price

• b: bid fee

• d: bid increment

• n: duration

Initially 1st round

B 
bids
B 

bids

2nd round 3rd round

AA BB CCA B CA B C AA BB CCA B CA B C AA BB CCA B CA B C AA BB CCA B CA B C
q=0 q=0 q=0 

A 
bids
A 

bids
B 

bids
B 

bids
B pays b
q ← q + d
B pays b
q ← q + d

A pays b
q ← q + d
A pays b
q ← q + d

B pays b
q ← q + d
B pays b
q ← q + d

Yujia Wang, Haoran Yu Predicting Real-World Penny Auction Durations by Integrating Game Theory and Machine Learning 8 / 33



BACKGROUND PROBLEM SOLUTION EXPERIMENTS CONCLUSION References

Penny Auction

• In penny auctions:

• q: buying price

• b: bid fee

• d: bid increment

• n: duration

Initially 1st round

B 
bids
B 

bids

2nd round 3rd round 4th round

AA BB CCA B CA B C AA BB CCA B CA B C AA BB CCA B CA B C AA BB CCA B CA B C AA BB CCA B CA B C
q=0 q=0 q=0 

A 
bids
A 

bids
B 

bids
B 

bids
C 

bids
C 

bids
B pays b
q ← q + d
B pays b
q ← q + d

A pays b
q ← q + d
A pays b
q ← q + d

B pays b
q ← q + d
B pays b
q ← q + d

C pays b
q ← q + d
C pays b
q ← q + d

Yujia Wang, Haoran Yu Predicting Real-World Penny Auction Durations by Integrating Game Theory and Machine Learning 8 / 33



BACKGROUND PROBLEM SOLUTION EXPERIMENTS CONCLUSION References

Penny Auction

• In penny auctions:

• q: buying price

• b: bid fee

• d: bid increment

• n: duration

Initially 1st round

B 
bids
B 

bids

2nd round 3rd round 4th round n = 4

AA BB CCA B CA B C AA BB CCA B CA B C AA BB CCA B CA B C AA BB CCA B CA B C AA BB CCA B CA B C CCCC
q=0 q=0 q=0 C pays 

q=4·d
C pays 
q=4·d

A 
bids
A 

bids
B 

bids
B 

bids
C 

bids
C 

bids
No one

bids
No one

bids
B pays b
q ← q + d
B pays b
q ← q + d

A pays b
q ← q + d
A pays b
q ← q + d

B pays b
q ← q + d
B pays b
q ← q + d

C pays b
q ← q + d
C pays b
q ← q + d

Yujia Wang, Haoran Yu Predicting Real-World Penny Auction Durations by Integrating Game Theory and Machine Learning 8 / 33



BACKGROUND PROBLEM SOLUTION EXPERIMENTS CONCLUSION References

Duration in Penny Auction

Initially 1st round
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• What we want to predict: DURATION.

• Duration is important because it relates to:

• buying price (e.g., 4 · d)

• overall payment (e.g., 4 · b + 4 · d)

• strategic behavior

• Bidders choose between bidding or not bidding.

• Duration is the result of bidders’ strategic behavior.
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Problem Formulation

• Auction configuration: Penny auctions are categorized by the
configuration si = {ri, vi, bi, di}, si ∈ S.

• i: data index

• bi: bid fee

• di: bid increment

• ri: product (e.g., “Apple iPhone 3G 16GB (White)”)

• vi: retail price (e.g., “$699”)

• S: the set of all auction configurations
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Duration in Penny Auction

• What we want to predict: DURATION.

• Penny auctions with the same configuration.
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• Auction configuration: Penny auctions are categorized by the
configuration si = {ri, vi, bi, di}, si ∈ S.

• i: data index

• bi: bid fee

• di: bid increment

• ri: product

• vi: retail price

• S: the set of all auction configurations

• Duration distribution: The probability that an auction ends after
n rounds is pi,n for each si ∈ S.

Auction Duration Prediction Problem
Given si, how to predict pi,n.
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ADAPT

• A three-stage framework: Auction Duration Prediction (ADAPT)

• Integration of game theory and machine learning.
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• r: product (e.g., “Apple iPhone 3G 16GB (White)”).

• The pre-trained Sentence Transformer Reimers and Gurevych
(2019) encodes r into a fixed-length embedding e.

• “Context-aware”.
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• Domain knowledge: Distribution prediction pi,n from different
game theory models (e.g., GT1, GT2, . . . ).

• pi,n: The probability that an auction ends after n rounds.

• To obtain pi,n,

• When to end: After n rounds, no bidder would like to bid.

• ui,t: The probability that at least one bidder bids after t − 1 rounds.
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• Domain knowledge: Distribution prediction pi,n from different
game theory models (e.g., GT1, GT2, . . . ).

• pi,n: The probability that an auction ends after n rounds.

• To obtain pi,n,

• When to end: After n rounds, no bidder would like to bid.

• ui,t: The probability that at least one bidder bids after t − 1 rounds.

pi,n = (1 − ui,n+1) ·Πn
t=1ui,t (1)
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Stage II: Domain Knowledge Extraction

• To obtain pi,n, we need ui,t:

pi,n = (1 − ui,n+1) ·Πn
t=1ui,t (1)

• ui,t: The probability that at least one bidder bids after t − 1 rounds.

• To obtain ui,t, we turn to game theory models.

• Equilibrium condition: A bidder is indifferent between bidding
or not bidding, when these two actions have the same utility.

• Example: game theory model based on Expected Utility
Theory (EUT):

(1−ui,t) · (vi−(t − 1) · di−bi)︸ ︷︷ ︸
Bidding and winning

+ ui,t · (−bi)︸ ︷︷ ︸
Bidding and losing

= 0︸︷︷︸
Not bidding

(2)

• vi: retail price

• bi: bid fee

• di: bid increment
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Stage III: Duration Distribution Prediction
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• Multi-Branch MDN: Multi-Branch Mixture Density Network.

• Input: Output from Stage I and Stage II.

• Output: Prediction of the auction duration distribution.

• Mixture density network Bishop (1994) is able to output a distribution.
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• Loss function: Negative log-likelihood.

LossMB−MDN = −
∑

i:|Ni|≠0

1
|Ni|

∑
n∈Ni

log(p̂i,n), (3)

• n: actual auction duration.

• i: index.

• p̂i,n: prediction from ADAPT.

• Ni: the set of actual auction durations under configuration si.
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Experimental Settings: Comparison Methods

• To evaluate auction duration prediction performance, we
compare:

• Our method (ADAPT).

• Game theory models (GT1, GT2, GT3).

• Machine learning-only method (EMB+MDN).

• Other combinations of game theory and machine learning
(GT1+MDN, GT2+MDN, GT1+EMB+MDN, GT2+EMB+MDN,
GT1+GT2+MDN).

• ADAPT = GT1+GT2+EMD+MDN.
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Experimental Settings: Datasets

• Synthetic dataset: 1, 276 auction configurations.

• Real dataset: 115, 831 records, 1, 276 auction configurations.

• Collected by Byers et al. (2010); Augenblick (2016) from online
penny auction websites.
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Results: Auction Duration Prediction

• Data: Synthetic testing data (10% of all synthetic data).

• Metric: NLL averaged over 8 runs.

N
L
L
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Results: Auction Duration Prediction

• Data: Real testing data (10% of all real data).

• Metric: NLL averaged over 8 runs.

GT1 GT2 GT3 GT1+MDN GT2+MDN EMB+MDN GT1+EMB+MDN GT2+EMB+MDN GT1+GT2+MDN ADAPT

NLL Avg 6.795 6.858 6.851 6.626 6.684 6.728 6.454 6.462 6.416 6.344
Std 0.140 0.208 0.145 0.409 0.283 0.113 0.103 0.111 0.075 0.061
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Results: Auction Duration Prediction

• Data: Real testing data (10% of all real data).

• Metric: NLL & KL-divergence averaged over 8 runs.

GT1 GT2 GT3 GT1+MDN GT2+MDN EMB+MDN GT1+EMB+MDN GT2+EMB+MDN GT1+GT2+MDN ADAPT

NLL Avg 6.795 6.858 6.851 6.626 6.684 6.728 6.454 6.462 6.416 6.344
Std 0.140 0.208 0.145 0.409 0.283 0.113 0.103 0.111 0.075 0.061

KL-D Avg 3.254 3.564 3.541 2.928 3.224 3.203 2.848 2.967 2.911 2.836
Std 0.128 0.209 0.463 0.084 0.259 0.086 0.076 0.143 0.123 0.075
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Results: Auction Duration Prediction

• Example in real testing data:

• Histogram: Actual auction duration (normalized).

• ADAPT: Prediction with the lowest NLL.
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Duration
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ADAPT(NLL:6.956)

GT1 (7.483)
GT2 (7.192)
GT3 (7.514)

GT1+MDN (7.335)
GT2+MDN (8.416)
EMB+MDN (7.427)
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GT2+EMB+MDN (7.114)
GT1+GT2+MDN (7.352)
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Results: Prediction Under Large Domain Shifts

• Split by bid fee:

• Real testing data: auctions with the bid fee of 0.01.

• Real training & validation data: the remaining.

Testing Data
Training & Validation Split by Bid Increment

0k 1k 2k 3k 4k 5k 6k
Durations

Testing Data
Training & Validation Split by Bid Fee
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Contribution

• Design a framework to predict the auction duration under
different auction configurations.

• Propose a approach to predict strategic behavior combining the
strengths of game theory and machine learning.
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Thanks!
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Supplement: InferNet

• A three-stage framework: Auction Duration Prediction (ADAPT)

Multi-Branch 
MDN

Pre-Trained 
Transformer

Stage II: Domain Knowledge Extraction
Stage III: 
Duration Distribution Prediction

Stage I: Product Embedding

InferNet-2InferNet-1 ...InferNet-2InferNet-1 ...

GT1 GT2 ...GT1 GT2 ...

Domain 
Knowledge
Domain 
Knowledge

Embedded Description
[e]

Embedded Description
[e]

Embedded Description
[e]

Data flow in Stage IIIData flow in Stage III

Data flow in Stage IIData flow in Stage II
Data flow in Stage IData flow in Stage I

Data flow in Stage III

Data flow in Stage II
Data flow in Stage I

ModelModel

DataData

Model

Data

Duration
Distribution
Duration
Distribution

r

v,b,d

v,b,d

Auction Configs
[r,v,b,d]

Auction Configs
[r,v,b,d]

Auction Configs
[r,v,b,d]

Yujia Wang, Haoran Yu Predicting Real-World Penny Auction Durations by Integrating Game Theory and Machine Learning 32 / 33



BACKGROUND PROBLEM SOLUTION EXPERIMENTS CONCLUSION References

Supplement: Model Parameter Inference

• Data: Synthetic testing data and real testing data (10% of all).

• Model: GT2 with parameters inferred by different methods.

• Metric: NLLs averaged over 8 runs.

SA-Avg SA-Unified InferNet

Synthetic Data Avg 7.938 6.588 5.947
Std 0.262 0.565 0.173

Real Data Avg 7.492 7.421 6.858
Std 0.133 0.355 0.208
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