BACKGROUND 0000 PROBLEM

SOLUTION

EXPERIMENT: 00000000 CONCLUSION OO References 000

Predicting Real-World Penny Auction Durations by Integrating Game Theory and Machine Learning

Yujia Wang, Haoran Yu

School of Computer Science & Technology, Beijing Institute of Technology yjwang.yoga@gmail.com, yhrhawk@gmail.com

March 10, 2024

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
●000	0000000	0000000	00000000		000

1 BACKGROUND

2 PROBLEM

 BACKGROUND
 PROBLEM
 SOLUTION
 EXPERIMENTS
 CONCLUSION
 References

 0 ● 00
 0000000
 00000000
 000
 000
 000

Strategic Behavior Prediction: Introduction

• Strategic behavior: Human behavior in strategic environments:

- Bidding in auctions.
- Offering in bargainings.
- Actions in card/board games.

Strategic Behavior Prediction: Conventional Approach

• Game theory approach

• **Steps**: (i) equilibrium assumption; (ii) predict behavior using game theory models.

Strategic Behavior Prediction: Conventional Approach

• Game theory approach

- **Steps**: (i) equilibrium assumption; (ii) predict behavior using game theory models.
- Cons: (i) strong assumptions; (ii) inaccurate prediction.

 BACKGROUND
 PROBLEM
 SOLUTION
 EXPERIMENTS
 CONCLUSION
 References

 0000
 0000000
 00000000
 000
 000
 000

Strategic Behavior Prediction: Conventional Approach

• Game theory approach

- **Steps**: (i) equilibrium assumption; (ii) predict behavior using game theory models.
- Cons: (i) strong assumptions; (ii) inaccurate prediction.

• Machine learning approach

• **Steps**: (i) train machine learning models on historical behavior data; (ii) predict behavior with the trained models.

Strategic Behavior Prediction: Conventional Approach

- Game theory approach
 - **Steps**: (i) equilibrium assumption; (ii) predict behavior using game theory models.
 - Cons: (i) strong assumptions; (ii) inaccurate prediction.

• Machine learning approach

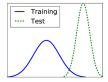
- **Steps**: (i) train machine learning models on historical behavior data; (ii) predict behavior with the trained models.
- Pros: (i) fewer assumptions (ii) accurate prediction.

Strategic Behavior Prediction: Conventional Approach

- Game theory approach
 - **Steps**: (i) equilibrium assumption; (ii) predict behavior using game theory models.
 - Cons: (i) strong assumptions; (ii) inaccurate prediction.

• Machine learning approach

- **Steps**: (i) train machine learning models on historical behavior data; (ii) predict behavior with the trained models.
- Pros: (i) fewer assumptions (ii) accurate prediction.
- **Cons**: the domain shift problem.



 BACKGROUND
 PROBLEM
 SOLUTION
 EXPERIMENTS
 CONCLUSION
 References

 OOO●
 0000000
 00000000
 000
 000
 000

Strategic Behavior Prediction: Motivation

• Due to bounded rationalities, a **gap** exists between the game-theoretic prediction and real human behavior.

Game theory model

Human behavior

 BACKGROUND
 PROBLEM
 SOLUTION
 EXPERIMENTS
 CONCLUSION
 References

 OOO
 0000000
 00000000
 0000000
 000
 000

Strategic Behavior Prediction: Motivation

- Due to bounded rationalities, a **gap** exists between the game-theoretic prediction and real human behavior.
 - The gap can be highly correlated with the strategic environment.

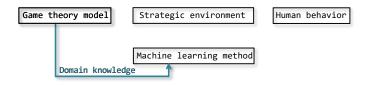
Game theory model

Strategic environment

Human behavior

Strategic Behavior Prediction: Motivation

- Due to bounded rationalities, a **gap** exists between the game-theoretic prediction and real human behavior.
 - The gap can be highly correlated with the strategic environment.



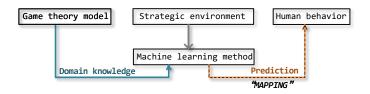
- To bridge the gap:
 - Take the game theory models as source of *domain knowledge*.

 BACKGROUND
 PROBLEM
 SOLUTION
 EXPERIMENTS
 CONCLUSION
 References

 OOO
 0000000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000<

Strategic Behavior Prediction: Motivation

- Due to bounded rationalities, a **gap** exists between the game-theoretic prediction and real human behavior.
 - The gap can be highly correlated with the strategic environment.



- To bridge the gap:
 - Take the game theory models as source of *domain knowledge*.
 - Use machine learning to learn the **mapping** from the domain knowledge and strategic environment to real human behavior.

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	•000000	0000000	00000000		000

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	000000	0000000	00000000	OO	000
Penny Au	ction				

• Auctions we usually see (e.g., ascending price auction):

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	O●OOOOOO	0000000	00000000	OO	000
Penny Au	ction				

• Auctions we usually see (e.g., ascending price auction):

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	O●OOOOOO	0000000	00000000	OO	000
Penny Au	ction				

• Auctions we usually see (e.g., ascending price auction):

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	00€0000	0000000	00000000	OO	000
Penny Au	ction				

- In penny auctions:
 - *q*: buying price

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	00€0000	0000000	00000000	OO	000
Penny Au	ction				

- In penny auctions:
 - *q*: buying price

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	000000	0000000	00000000	OO	000
Penny Au	ction				

- In penny auctions:
 - *q*: buying price

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	00●0000	0000000	00000000	OO	000
D					

- In penny auctions:
 - *q*: buying price
 - *b*: bid fee

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	00●0000	0000000	00000000	OO	000
-					

- In penny auctions:
 - *q*: buying price
 - *b*: bid fee
 - d: bid increment

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000	0000000	00000000	OO	000

- In penny auctions:
 - *q*: buying price
 - *b*: bid fee
 - d: bid increment

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000	0000000	00000000	OO	000

- In penny auctions:
 - *q*: buying price
 - *b*: bid fee
 - d: bid increment

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000	0000000	00000000	OO	000

- In penny auctions:
 - *q*: buying price
 - *b*: bid fee
 - d: bid increment

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	00●0000	0000000	00000000	OO	000

- In penny auctions:
 - q: buying price
 - *b*: bid fee
 - d: bid increment
 - *n*: duration

No one

r

What we want to predict: DURATION.

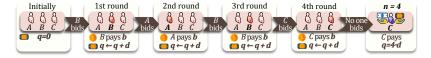
A

Duration is important because it relates to: ۰

- What we want to predict: DURATION.
- Duration is important because it relates to:
 - buying price (e.g., $4 \cdot d$)

- What we want to predict: DURATION.
- Duration is important because it relates to:
 - buying price (e.g., $4 \cdot d$)
 - overall payment (e.g., $4 \cdot b + 4 \cdot d$)

- What we want to predict: DURATION.
- Duration is important because it relates to:
 - buying price (e.g., $4 \cdot d$)
 - overall payment (e.g., $4 \cdot b + 4 \cdot d$)
 - strategic behavior



- What we want to predict: DURATION.
- Duration is important because it relates to:
 - ٠ buying price (e.g., $4 \cdot d$)
 - overall payment (e.g., $4 \cdot b + 4 \cdot d$)
 - strategic behavior
 - Bidders choose between bidding or not bidding.



- What we want to predict: DURATION.
- Duration is important because it relates to:
 - buying price (e.g., $4 \cdot d$)
 - overall payment (e.g., $4 \cdot b + 4 \cdot d$)
 - strategic behavior
 - Bidders choose between *bidding* or *not bidding*.
 - Duration is the result of bidders' strategic behavior.

Droblem For		000000	0000000	00	000
0000	0000000	0000000	0000000	00	000
BACKGROUND	PROBLEM			CONCLUSION	

Problem Formulation

- Auction configuration: Penny auctions are categorized by the configuration $s_i = \{r_i, v_i, b_i, d_i\}, s_i \in S$.
 - *i*: data index
 - *b_i*: bid fee
 - *d_i*: bid increment

Problem Formulation

- Auction configuration: Penny auctions are categorized by the configuration *s*_{*i*} = {*r*_{*i*}, *v*_{*i*}, *b*_{*i*}, *d*_{*i*}}, *s*_{*i*} ∈ S.
 - *i*: data index
 - *b_i*: bid fee
 - *d_i*: bid increment
 - *r_i*: product (e.g., "Apple iPhone 3G 16GB (White)")
 - *v_i*: retail price (e.g., "\$699")

Problem Formulation

- Auction configuration: Penny auctions are categorized by the configuration *s*_{*i*} = {*r*_{*i*}, *v*_{*i*}, *b*_{*i*}, *d*_{*i*}}, *s*_{*i*} ∈ S.
 - *i*: data index
 - *b_i*: bid fee
 - *d_i*: bid increment
 - *r_i*: product (e.g., "Apple iPhone 3G 16GB (White)")
 - *v_i*: retail price (e.g., "\$699")
 - S: the set of all auction configurations

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000	0000000	00000000	OO	000

Duration in Penny Auction

• What we want to predict: DURATION.

	ROBLEM SOLUTION 0000000 000000		CONCLUSION OO	References 000
--	--	--	------------------	-------------------

Duration in Penny Auction

• What we want to predict: DURATION.

• Penny auctions with the same configuration.

Reign Olympia - Blue / Silver Buy it Now price: \$700

 BACKGROUND
 PROBLEM
 SOLUTION
 EXPERIMENTS
 CONCLUSION
 References

 0000
 0000000
 00000000
 000
 000
 000

Problem Formulation

- Auction configuration: Penny auctions are categorized by the configuration s_i = {r_i, ν_i, b_i, d_i}, s_i ∈ S.
 - *i*: data index
 - *b_i*: bid fee
 - *d_i*: bid increment
 - *r_i*: product
 - *v_i*: retail price
 - S: the set of all auction configurations
- **Duration distribution**: The probability that an auction ends after *n* rounds is $p_{i,n}$ for each $s_i \in S$.

Auction Duration Prediction Problem

Given s_i , how to predict $p_{i,n}$.

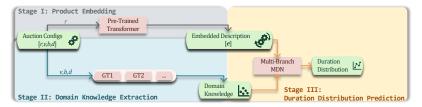
BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000	•000000	00000000		000

1 BACKGROUND

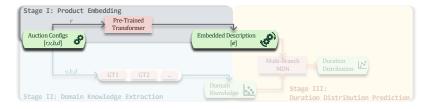
2 PROBLEM

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000	0000000	00000000	OO	000
ADAPT					

- A three-stage framework: Auction Duration Prediction (ADAPT)
- Integration of game theory and machine learning.

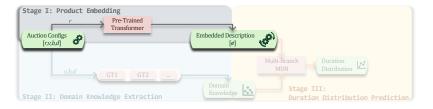


Stage I: Product Embedding



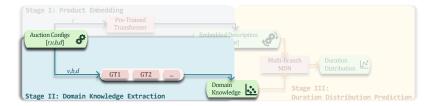
- *r*: product (e.g., "Apple iPhone 3G 16GB (White)").
- The pre-trained Sentence Transformer Reimers and Gurevych (2019) encodes *r* into a fixed-length embedding *e*.

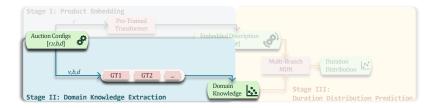
Stage I: Product Embedding



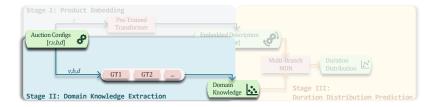
- *r*: product (e.g., "Apple iPhone 3G 16GB (White)").
- The pre-trained Sentence Transformer Reimers and Gurevych (2019) encodes *r* into a fixed-length embedding *e*.
- "Context-aware".

BACKGROUND PROBLEM SOLUTION EXPERIMENTS CONCLUSION References 0000 0000000 0000000 0000000 0000000 000 000

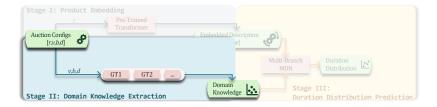




- **Domain knowledge:** Distribution prediction $p_{i,n}$ from different game theory models (e.g., GT1, GT2, ...).
 - $p_{i,n}$: The probability that an auction ends after *n* rounds.



- **Domain knowledge**: Distribution prediction $p_{i,n}$ from different game theory models (e.g., GT1, GT2, ...).
 - $p_{i,n}$: The probability that an auction ends after *n* rounds.
- To obtain $p_{i,n}$,
 - When to end: After *n* rounds, no bidder would like to bid.



- **Domain knowledge:** Distribution prediction $p_{i,n}$ from different game theory models (e.g., GT1, GT2, ...).
 - $p_{i,n}$: The probability that an auction ends after *n* rounds.
- To obtain $p_{i,n}$,
 - When to end: After *n* rounds, no bidder would like to bid.
 - $u_{i,t}$: The probability that at least one bidder bids after t 1 rounds.

- **Domain knowledge**: Distribution prediction $p_{i,n}$ from different game theory models (e.g., GT1, GT2, ...).
 - $p_{i,n}$: The probability that an auction ends after *n* rounds.
- To obtain $p_{i,n}$,
 - When to end: After *n* rounds, no bidder would like to bid.
 - $u_{i,t}$: The probability that at least one bidder bids after t 1 rounds.

$$p_{i,n} = (1 - u_{i,n+1}) \cdot \prod_{t=1}^{n} u_{i,t}$$
(1)

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000	0000●00	00000000	OO	000
Stage II:	Domain Kn	owledge Ex	traction		

$$p_{i,n} = (1 - u_{i,n+1}) \cdot \prod_{t=1}^{n} u_{i,t}$$
(1)

• $u_{i,t}$: The probability that at least one bidder bids after t - 1 rounds.

$$p_{i,n} = (1 - u_{i,n+1}) \cdot \prod_{t=1}^{n} u_{i,t}$$
(1)

- $u_{i,t}$: The probability that at least one bidder bids after t 1 rounds.
- To obtain *u*_{*i*,*t*}, we turn to game theory models.

$$p_{i,n} = (1 - u_{i,n+1}) \cdot \prod_{t=1}^{n} u_{i,t}$$
(1)

- $u_{i,t}$: The probability that at least one bidder bids after t 1 rounds.
- To obtain *u*_{*i*,*t*}, we turn to game theory models.
- **Equilibrium condition**: A bidder is indifferent between bidding or not bidding, when these two actions have the same utility.

$$p_{i,n} = (1 - u_{i,n+1}) \cdot \prod_{t=1}^{n} u_{i,t}$$
(1)

- $u_{i,t}$: The probability that at least one bidder bids after t 1 rounds.
- To obtain *u*_{*i*,*t*}, we turn to game theory models.
- **Equilibrium condition**: A bidder is indifferent between bidding or not bidding, when these two actions have the same utility.
- Example: game theory model based on Expected Utility Theory (EUT):

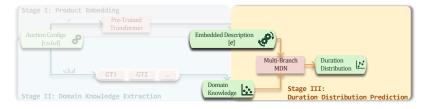
$$p_{i,n} = (1 - u_{i,n+1}) \cdot \prod_{t=1}^{n} u_{i,t}$$
(1)

- $u_{i,t}$: The probability that at least one bidder bids after t 1 rounds.
- To obtain *u*_{*i*,*t*}, we turn to game theory models.
- **Equilibrium condition**: A bidder is indifferent between bidding or not bidding, when these two actions have the same utility.
- Example: game theory model based on Expected Utility Theory (EUT):

$$\underbrace{(1-u_{i,t})\cdot(v_i-(t-1)\cdot d_i-b_i)}_{\text{Bidding and winning}} + \underbrace{u_{i,t}\cdot(-b_i)}_{\text{Bidding and losing}} = \underbrace{0}_{\text{Not bidding}}$$
(2)

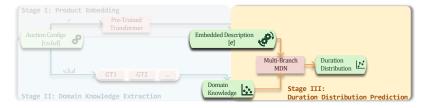
- *v_i*: retail price
- *b_i*: bid fee
- *d_i*: bid increment

Stage III: Duration Distribution Prediction



- Multi-Branch MDN: Multi-Branch Mixture Density Network.
 - Input: Output from Stage I and Stage II.

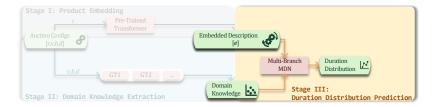
Stage III: Duration Distribution Prediction



- Multi-Branch MDN: Multi-Branch Mixture Density Network.
 - Input: Output from Stage I and Stage II.
 - Output: Prediction of the auction duration distribution.
 - Mixture density network Bishop (1994) is able to output a distribution.

18 / 33

Stage III: Duration Distribution Prediction



• Loss function: Negative log-likelihood.

$$\text{Loss}_{\text{MB}-\text{MDN}} = -\sum_{i:|\mathcal{N}_i|\neq 0} \frac{1}{|\mathcal{N}_i|} \sum_{n\in\mathcal{N}_i} \log(\hat{p}_{i,n}), \tag{3}$$

- *n*: actual auction duration.
- *i*: index.
- $\hat{p}_{i,n}$: prediction from ADAPT.
- N_i : the set of actual auction durations under configuration s_i .

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000		0000000	OO	000

1 BACKGROUND

2 PROBLEM

- To evaluate auction duration prediction performance, we compare:
 - Our method (ADAPT).

- To evaluate auction duration prediction performance, we compare:
 - Our method (ADAPT).
 - Game theory models (GT1, GT2, GT3).
 - Machine learning-only method (EMB+MDN).

- To evaluate auction duration prediction performance, we compare:
 - Our method (ADAPT).
 - Game theory models (GT1, GT2, GT3).
 - Machine learning-only method (EMB+MDN).
 - Other combinations of game theory and machine learning (GT1+MDN, GT2+MDN, GT1+EMB+MDN, GT2+EMB+MDN, GT1+GT2+MDN).

- To evaluate auction duration prediction performance, we compare:
 - Our method (ADAPT).
 - Game theory models (GT1, GT2, GT3).
 - Machine learning-only method (EMB+MDN).
 - Other combinations of game theory and machine learning (GT1+MDN, GT2+MDN, GT1+EMB+MDN, GT2+EMB+MDN, GT1+GT2+MDN).
 - ADAPT = GT1 + GT2 + EMD + MDN.

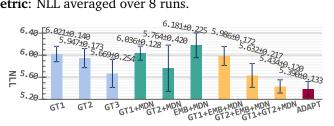
21/33

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000	0000000	00000000	OO	000

Experimental Settings: Datasets

- Synthetic dataset: 1,276 auction configurations.
- Real dataset: 115,831 records, 1,276 auction configurations.
 - Collected by Byers et al. (2010); Augenblick (2016) from online penny auction websites.

- **Data**: Synthetic testing data (10% of all synthetic data).
- Metric: NLL averaged over 8 runs.



	eferences 00
--	-----------------

- **Data**: Real testing data (10% of all real data).
- Metric: NLL averaged over 8 runs.

		GT1	GT2	GT3	GT1+MDN	GT2+MDN	EMB+MDN	GT1+EMB+MDN	GT2+EMB+MDN	GT1+GT2+MDN	ADAPT
NLL	Avg	6.795	6.858	6.851	6.626	6.684	6.728	6.454	6.462	6.416	6.344
INLL	Std	0.140	0.208	0.145	0.409	0.283	0.113	0.103	0.111	0.075	0.061

	leferences DOO
--	-------------------

- **Data**: Real testing data (10% of all real data).
- Metric: NLL & KL-divergence averaged over 8 runs.

		GT1	GT2	GT3	GT1+MDN	GT2+MDN	EMB+MDN	GT1+EMB+MDN	GT2+EMB+MDN	GT1+GT2+MDN	ADAPT
NLL	Avg	6.795	6.858	6.851	6.626	6.684	6.728	6.454	6.462	6.416	6.344
INLL	Std	0.140	0.208	0.145	0.409	0.283	0.113	0.103	0.111	0.075	0.061
KL-D	Avg	3.254	3.564	3.541	2.928	3.224	3.203	2.848	2.967	2.911	2.836
KL-D	Stď	0.128	0.209	0.463	0.084	0.259	0.086	0.076	0.143	0.123	0.075

Example in real testing data: ٠

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Duration

Probability

Θ

- Histogram: Actual auction duration (normalized).
- ADAPT: Prediction with the lowest NLL. 0.37 —Histogram 0.06-(4.664) GT2+MDN - ADAPT(NLL:3.203 (4.840) 9.00 0 Probability 2+EMB+MDN (3.536)

1+GT2+MDN (3 662

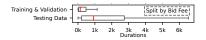
EMB+MDN (7.114

+GT2+MDN (7 352)

21 71 121 171 221 271 321 371 421 471 521 571 621 671 721 771 821 871

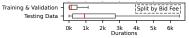
Duration

Results: Prediction Under Large Domain Shifts



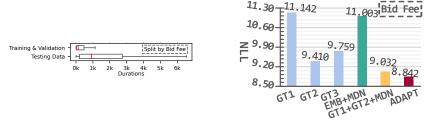
Results: Prediction Under Large Domain Shifts

- Split by bid fee:
 - Real testing data: auctions with the bid fee of 0.01.
 - Real training & validation data: the remaining.



Results: Prediction Under Large Domain Shifts

- Split by bid fee:
 - Real testing data: auctions with the bid fee of 0.01.
 - Real training & validation data: the remaining.



BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000	0000000	00000000	• O	000

BACKGROUND

PROBLEM

SOLUTION

EXPERIMENTS

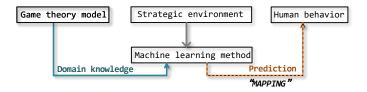
Yujia Wang, Haoran Yu Predicting Real-World Penny Auction Durations by Integrating Game Theory and Machine Learning 28 / 33

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000	0000000	00000000	O●	000
Contribut	ion				

• Design a framework to predict the auction duration under different auction configurations.

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000	0000000	00000000	O●	000
Contribut	ion				

- Design a framework to predict the auction duration under different auction configurations.
- Propose a approach to predict strategic behavior combining the strengths of game theory and machine learning.



BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000	0000000	00000000	OO	000
References					

- Augenblick, N. (2016). The sunk-cost fallacy in penny auctions. *The Review of Economic Studies*, 83(1):58–86.
- Bishop, C. (1994). Mixture density networks. Workingpaper, Aston University.
- Byers, J. W., Mitzenmacher, M., and Zervas, G. (2010). Information asymmetries in payper-bid auctions. In Proceedings of the 11th ACM conference on Electronic commerce, pages 1–12.
- Glauner, P., State, R., Valtchev, P., and Duarte, D. (2018). On the reduction of biases in big data sets for the detection of irregular power usage. In *Data Science and Knowledge Engineering for Sensing Decision Support: Proceedings of the 13th International FLINS Conference (FLINS 2018)*, pages 439–445. World Scientific.
- Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*. Association for Computational Linguistics.

BACKGROUND 0000 PROBLEM

SOLUTION 0000000 EXPERIMENT

CONCLUSION 00 References ●00

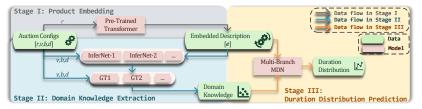
Thanks!

Yujia Wang, Haoran Yu Predicting Real-World Penny Auction Durations by Integrating Game Theory and Machine Learning 31 / 33

BACKGROUND	PROBLEM	SOLUTION	EXPERIMENTS	CONCLUSION	References
0000	0000000	0000000	00000000	OO	○●○

Supplement: InferNet

• A three-stage framework: Auction Duration Prediction (ADAPT)



References 000

Supplement: Model Parameter Inference

- **Data**: Synthetic testing data and real testing data (10% of all).
- Model: GT2 with parameters inferred by different methods.
- Metric: NLLs averaged over 8 runs.

		SA-Avg	SA-Unified	InferNet
Synthetic Data	Avg	7.938 0.262	6.588	5.947
Synthetic Data	Std	0.262	0.565	0.173
Real Data		7.492	7.421	6.858
Real Data	Std	0.133	0.355	0.208