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BACKGROUND

Portfolio Choice:

e Trading platforms utilize robo-advisors to interact with investors
and elicit hidden information from their choices across portfolios.
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e Inferring the relationship between an investor’s observable and hid-
den information depends on the platform’s experimental design.
Our Goal: Design experiment to learn contextual behavioral model.

e Collect the most informative data for learning network weights.

PROBLEM FORMULATION
e The platform strategy is based on:

— t: period of platform interaction t =1,2,..,T
— x;: Investor contextual information
- d={(mq1,v1),...,(mg,vK)}: designed investment portfolios

x m,v: return mean and return variance

x K : the number of portfolios in design
— %t—l = {(Xl, dl, yl) o eens (Xt—la dt—la yt—l)}: historical dataset

— 0: contextual behavioral model weights
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Platform’s Experimental Design Problem

Given H;_1 and x;, how to optimize the design d; € D; for

training an accurate f-parameterized neural network?

PLATFORM’S EXPERIMENTAL DESIGN SOLUTION

e Expected information gain (EIG): quantify design quality

Lyl [H [P(0)] — H[p(8]z,y, d)]]

EIG(d) =

— p(0) is prior; p(@|x,y, d) is posterior.

— The uncertainty of @ decreases as new data is collected.

e Bayesian neural networks (BNN): calculate EIG

0 ~ N(u,0)

Bayesian neural networks

neural networks

— EIG calculations necessitate non-fixed model weights.
— We use variational inference q(0|¢) to approximate p(0|x,y, d).
Our Solution:
e Inference: learn ¢ by training Bayesian neural network

e Design: choose the design to maximize the estimated EIG

[-1D-LP

e Integrated Inference-and-Design with Learnable Priors (I-ID-LP)

— Learnable prior: a random initialized prior distribution p(8) will
disrupt the inference step during the early periods

— Integrated Inference-and-Design: separating inference and de-
sign may lead to suboptimal performance, as the optimization
of ¢ fails to maximize information gain
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ITERATIVE OPTIMIZATION

Loss function for iterative optimization:
e Optimize ¢” while keeping d; = d] —*:

¢ = arg;nin KL[q(0]|9)||p(0|H:—1)]

— Ey 010 log KL[p(yt|@e, 7, 0)||p(ye|2e, df )]

e Optimize d] while keeping ¢ = ¢

d; = ATg max / q(0¢") log KL[p(y¢ |, dy, 6)||p(yi| 2, dy)]dO

EXPERIMENTS & RESULTS

Comparison Among ID Methods:

- NLL Loss: the loss of predicting investor choice y in Hest-

- MSEs of Predicting r(x) and A(x): the mean squared errors between
the outputs of NN and the actual r(ax), A(a) of investors in Hyest-
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Comparison of ID Methods Under Setting A

Comparison with Other Methods

Table: Negative Log-Likelihood Loss on Testing Dataset

Method Setting A Setting B Setting C

ID 0.416 £ 0.025 0.319 £ 0.017 0.397 £ 0.010
ID-LP 0.409 £+ 0.025 0.306 £ 0.018 0.390 £ 0.007
I-ID-LP 0.408 + 0.029 0.297 £+ 0.010 0.387 + 0.007
ID-LP-minEIG 0.498 + 0.012 0.427 4+ 0.026 0.565 £+ 0.113
ID-LP-medEIG 0.461 £ 0.019 0.331 & 0.010 0.435 £ 0.047
PreEntropy 0.557 £ 0.111  0.366 £ 0.028 0.634 £+ 0.216
MinMaxPro 0.611 £+ 0.122 0.366 £ 0.030 0.705 £ 0.196
Laplacelnfer 0.462 + 0.026 0.327 £ 0.012 0.411 £+ 0.013
Random 0.459 £+ 0.022 0.329 £ 0.012 0.425 £+ 0.035
MaxMean 0.468 + 0.003 0.404 £+ 0.045 0.510 4+ 0.012
MaxVar 0.560 £+ 0.008 0.340 £+ 0.008 0.624 £ 0.010
MaxMean+Var 0.468 £+ 0.003 0.336 £ 0.004 0.501 £ 0.003
MaxMean—Var 0.512 + 0.013 0.803 £ 0.424 0.562 + 0.063

More results on other experiments can be found in our paper.



