Integrating Inference and Experimental Design for Contextual Behavioral Model Learning # Gongtao Zhou Haoran Yu zhougt3@qq.com, yhrhawk@gmail.com School of Computer Science & Technology, Beijing Institute of Technology ## BACKGROUND #### Portfolio Choice: • Trading platforms utilize robo-advisors to interact with investors and elicit hidden information from their choices across portfolios. • Inferring the relationship between an investor's observable and hidden information depends on the platform's experimental design. Our Goal: Design experiment to learn contextual behavioral model. • Collect the most informative data for learning network weights. # PROBLEM FORMULATION - The platform strategy is based on: - t: period of platform interaction t = 1, 2, ..., T - x_t : investor contextual information - $d = \{(m_1, v_1), ..., (m_K, v_K)\}$: designed investment portfolios - * m, v: return mean and return variance - * K: the number of portfolios in design - $-\mathcal{H}_{t-1} \triangleq \{(\mathbf{x}_1, \mathbf{d}_1, y_1), ..., (\mathbf{x}_{t-1}, \mathbf{d}_{t-1}, y_{t-1})\}: \text{ historical dataset}$ - $-\theta$: contextual behavioral model weights ### Platform's Experimental Design Problem Given \mathcal{H}_{t-1} and \mathbf{x}_t , how to optimize the design $\mathbf{d}_t \in \mathcal{D}_t$ for training an accurate θ -parameterized neural network? # PLATFORM'S EXPERIMENTAL DESIGN SOLUTION • Expected information gain (EIG): quantify design quality $$EIG(\boldsymbol{d}) \triangleq \mathbb{E}_{p(y|\boldsymbol{x},\boldsymbol{d})}[H[p(\boldsymbol{\theta})] - H[p(\boldsymbol{\theta}|\boldsymbol{x},y,\boldsymbol{d})]]$$ - $p(\theta)$ is prior; $p(\boldsymbol{\theta}|\boldsymbol{x},y,\boldsymbol{d})$ is posterior. - The uncertainty of θ decreases as new data is collected. - Bayesian neural networks (BNN): calculate EIG - EIG calculations necessitate non-fixed model weights. - We use variational inference $q(\boldsymbol{\theta}|\boldsymbol{\phi})$ to approximate $p(\boldsymbol{\theta}|\boldsymbol{x},y,\boldsymbol{d})$. #### Our Solution: - ullet Inference: learn ϕ by training Bayesian neural network - Design: choose the design to maximize the estimated EIG ## I-ID-LP - Integrated Inference-and-Design with Learnable Priors (I-ID-LP) - Learnable prior: a random initialized prior distribution $p(\theta)$ will disrupt the inference step during the early periods - Integrated Inference-and-Design: separating inference and design may lead to suboptimal performance, as the optimization of ϕ fails to maximize information gain # ITERATIVE OPTIMIZATION ## Loss function for iterative optimization: • Optimize ϕ^{τ} while keeping $d_t = d_t^{\tau-1}$: $$\phi^{\tau} = \underset{\boldsymbol{\phi}}{\operatorname{arg\,min}\, \mathrm{KL}}[q(\boldsymbol{\theta}|\boldsymbol{\phi})||p(\boldsymbol{\theta}|\mathcal{H}_{t-1})]$$ $$-\mathbb{E}_{q(\boldsymbol{\theta}|\boldsymbol{\phi})}[\log \mathrm{KL}[p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t^{\tau-1},\boldsymbol{\theta})||p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t^{\tau-1})]]$$ • Optimize d_t^{τ} while keeping $\phi = \phi^{\tau}$: $$\boldsymbol{d}_t^{\tau} = \argmax_{\boldsymbol{d}_t} \int q(\boldsymbol{\theta}|\boldsymbol{\phi}^{\tau}) \log \mathrm{KL}[p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t,\boldsymbol{\theta})||p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t)]d\boldsymbol{\theta}$$ ## Experiments & Results #### Comparison Among ID Methods: - NLL Loss: the loss of predicting investor choice y in \mathcal{H}_{test} . - MSEs of Predicting $r(\mathbf{x})$ and $\lambda(\mathbf{x})$: the mean squared errors between the outputs of NN and the actual $r(\mathbf{x})$, $\lambda(\mathbf{x})$ of investors in \mathcal{H}_{test} . Comparison of ID Methods Under Setting A #### Comparison with Other Methods Table: Negative Log-Likelihood Loss on Testing Dataset | Method | Setting A | Setting B | Setting C | |---------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | $\overline{\mathbf{ID}}$ | 0.416 ± 0.025 | 0.319 ± 0.017 | 0.397 ± 0.010 | | ID-LP | 0.409 ± 0.025 | 0.306 ± 0.018 | 0.390 ± 0.007 | | I-ID-LP | $\textbf{0.408}\pm\textbf{0.029}$ | $\textbf{0.297}\pm\textbf{0.010}$ | $\textbf{0.387}\pm\textbf{0.007}$ | | ID-LP-minEIG | 0.498 ± 0.012 | 0.427 ± 0.026 | 0.565 ± 0.113 | | $\mathbf{ID\text{-}LP\text{-}medEIG}$ | 0.461 ± 0.019 | 0.331 ± 0.010 | 0.435 ± 0.047 | | PreEntropy | 0.557 ± 0.111 | 0.366 ± 0.028 | 0.634 ± 0.216 | | MinMaxPro | 0.611 ± 0.122 | 0.366 ± 0.030 | 0.705 ± 0.196 | | LaplaceInfer | 0.462 ± 0.026 | 0.327 ± 0.012 | 0.411 ± 0.013 | | Random | 0.459 ± 0.022 | 0.329 ± 0.012 | 0.425 ± 0.035 | | MaxMean | 0.468 ± 0.003 | 0.404 ± 0.045 | 0.510 ± 0.012 | | \mathbf{MaxVar} | 0.560 ± 0.008 | 0.340 ± 0.008 | 0.624 ± 0.010 | | MaxMean+Var | 0.468 ± 0.003 | 0.336 ± 0.004 | 0.501 ± 0.003 | | MaxMean–Var | 0.512 ± 0.013 | 0.803 ± 0.424 | 0.562 ± 0.063 | More results on other experiments can be found in our paper.