Integrating Inference and Experimental Design for Contextual Behavioral Model Learning

Gongtao Zhou Haoran Yu

zhougt3@qq.com, yhrhawk@gmail.com School of Computer Science & Technology, Beijing Institute of Technology

BACKGROUND

Portfolio Choice:

• Trading platforms utilize robo-advisors to interact with investors and elicit hidden information from their choices across portfolios.

• Inferring the relationship between an investor's observable and hidden information depends on the platform's experimental design.

Our Goal: Design experiment to learn contextual behavioral model.

• Collect the most informative data for learning network weights.

PROBLEM FORMULATION

- The platform strategy is based on:
 - t: period of platform interaction t = 1, 2, ..., T
 - x_t : investor contextual information
 - $d = \{(m_1, v_1), ..., (m_K, v_K)\}$: designed investment portfolios
 - * m, v: return mean and return variance
 - * K: the number of portfolios in design
 - $-\mathcal{H}_{t-1} \triangleq \{(\mathbf{x}_1, \mathbf{d}_1, y_1), ..., (\mathbf{x}_{t-1}, \mathbf{d}_{t-1}, y_{t-1})\}: \text{ historical dataset}$
- $-\theta$: contextual behavioral model weights

Platform's Experimental Design Problem

Given \mathcal{H}_{t-1} and \mathbf{x}_t , how to optimize the design $\mathbf{d}_t \in \mathcal{D}_t$ for training an accurate θ -parameterized neural network?

PLATFORM'S EXPERIMENTAL DESIGN SOLUTION

• Expected information gain (EIG): quantify design quality

$$EIG(\boldsymbol{d}) \triangleq \mathbb{E}_{p(y|\boldsymbol{x},\boldsymbol{d})}[H[p(\boldsymbol{\theta})] - H[p(\boldsymbol{\theta}|\boldsymbol{x},y,\boldsymbol{d})]]$$

- $p(\theta)$ is prior; $p(\boldsymbol{\theta}|\boldsymbol{x},y,\boldsymbol{d})$ is posterior.
- The uncertainty of θ decreases as new data is collected.
- Bayesian neural networks (BNN): calculate EIG

- EIG calculations necessitate non-fixed model weights.
- We use variational inference $q(\boldsymbol{\theta}|\boldsymbol{\phi})$ to approximate $p(\boldsymbol{\theta}|\boldsymbol{x},y,\boldsymbol{d})$.

Our Solution:

- ullet Inference: learn ϕ by training Bayesian neural network
- Design: choose the design to maximize the estimated EIG

I-ID-LP

- Integrated Inference-and-Design with Learnable Priors (I-ID-LP)
 - Learnable prior: a random initialized prior distribution $p(\theta)$ will disrupt the inference step during the early periods
 - Integrated Inference-and-Design: separating inference and design may lead to suboptimal performance, as the optimization of ϕ fails to maximize information gain

ITERATIVE OPTIMIZATION

Loss function for iterative optimization:

• Optimize ϕ^{τ} while keeping $d_t = d_t^{\tau-1}$:

$$\phi^{\tau} = \underset{\boldsymbol{\phi}}{\operatorname{arg\,min}\, \mathrm{KL}}[q(\boldsymbol{\theta}|\boldsymbol{\phi})||p(\boldsymbol{\theta}|\mathcal{H}_{t-1})]$$
$$-\mathbb{E}_{q(\boldsymbol{\theta}|\boldsymbol{\phi})}[\log \mathrm{KL}[p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t^{\tau-1},\boldsymbol{\theta})||p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t^{\tau-1})]]$$

• Optimize d_t^{τ} while keeping $\phi = \phi^{\tau}$:

$$\boldsymbol{d}_t^{\tau} = \argmax_{\boldsymbol{d}_t} \int q(\boldsymbol{\theta}|\boldsymbol{\phi}^{\tau}) \log \mathrm{KL}[p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t,\boldsymbol{\theta})||p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t)]d\boldsymbol{\theta}$$

Experiments & Results

Comparison Among ID Methods:

- NLL Loss: the loss of predicting investor choice y in \mathcal{H}_{test} .
- MSEs of Predicting $r(\mathbf{x})$ and $\lambda(\mathbf{x})$: the mean squared errors between the outputs of NN and the actual $r(\mathbf{x})$, $\lambda(\mathbf{x})$ of investors in \mathcal{H}_{test} .

Comparison of ID Methods Under Setting A

Comparison with Other Methods

Table: Negative Log-Likelihood Loss on Testing Dataset

Method	Setting A	Setting B	Setting C
$\overline{\mathbf{ID}}$	0.416 ± 0.025	0.319 ± 0.017	0.397 ± 0.010
ID-LP	0.409 ± 0.025	0.306 ± 0.018	0.390 ± 0.007
I-ID-LP	$\textbf{0.408}\pm\textbf{0.029}$	$\textbf{0.297}\pm\textbf{0.010}$	$\textbf{0.387}\pm\textbf{0.007}$
ID-LP-minEIG	0.498 ± 0.012	0.427 ± 0.026	0.565 ± 0.113
$\mathbf{ID\text{-}LP\text{-}medEIG}$	0.461 ± 0.019	0.331 ± 0.010	0.435 ± 0.047
PreEntropy	0.557 ± 0.111	0.366 ± 0.028	0.634 ± 0.216
MinMaxPro	0.611 ± 0.122	0.366 ± 0.030	0.705 ± 0.196
LaplaceInfer	0.462 ± 0.026	0.327 ± 0.012	0.411 ± 0.013
Random	0.459 ± 0.022	0.329 ± 0.012	0.425 ± 0.035
MaxMean	0.468 ± 0.003	0.404 ± 0.045	0.510 ± 0.012
\mathbf{MaxVar}	0.560 ± 0.008	0.340 ± 0.008	0.624 ± 0.010
MaxMean+Var	0.468 ± 0.003	0.336 ± 0.004	0.501 ± 0.003
MaxMean–Var	0.512 ± 0.013	0.803 ± 0.424	0.562 ± 0.063

More results on other experiments can be found in our paper.