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BACKGROUND
€000

Contextual Behavioral Model

@ Contextual behavior model: user behavior is based on their
contextual information

bidding in offering in selecting in
auctions bargainings portfolios
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BACKGROUND
0000

Contextual Behavioral Model

o Offline Learning: learn the relation between contextual
information and user hidden information

o Cons: require a large offline dataset
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Contextual Behavioral Model

@ Online learning: design sequential experiments to collect the
most informative user behavioral data for learning

o Cons: strategic environment for user can be designed

collecting dataset training model
(online) (online / offline)
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BACKGROUND
0000

Contextual Behavioral Model

@ Online learning: design sequential experiments to collect the
most informative user behavioral data for learning

o Cons: strategic environment for user can be designed
@ Related work: assume linear context-valuation mappings

@ Our work: explore a general setting: (i) mapping can be
non-linear (ii) hidden information is multidimensional

A

collecting dataset training model
(online) (online / offline)
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Contextual Behavioral Model

@ Question: how to design sequential experiments to learn an
accurate contextual behavioral model?
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PROBLEM
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Portfolio Choice

e For simplicity, our problem begins with a single experiment
involving one investor

observable:
context information

unobservable:
risk preference 7 (2)

rationality \(z)
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e For simplicity, our problem begins with a single experiment
involving one investor

observable:
context information

Which portfolio would you prefer to invest in?

[ Portfolio 1 | [ Portfolio2 | [ Portfolio 3 |

unobservable:
risk preference 7 (2)

{set of design d= D
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PROBLEM
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Portfolio Choice

e For simplicity, our problem begins with a single experiment
involving one investor

observable:
context information

Which portfolio would you prefer to invest in?

[ Portfolio 1 | [ Portfolio2 | [ Portfolio 3 |

unobservable:
risk preference 7 (2)

rationality A(z)

{set of design d = D

1
1
1
1
l Portfolio 4 ‘ l None of the above‘ design d !

Ll m
= /[ I would prefer portfolio ... (choice ¥ ) ]
investor robo-advisor
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PROBLEM
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Portfolio Choice

@ Sequential experiments: in each period t = 1,2, ..., T,
robo-advisor will interact with investors
e Investors of each period can be multiple or different
o historical dataset H, | = {(x1,d1,y1), -, (Xe—1,d—1, yi—1)}

observable:
context information x 4
unobservable:

i r(g,) |- - --=====-=====-=="==°""-"-""-°-"°-°"°-°< 1
fsk preference (=) [ Portfolio 1 | [ Portfolio 2 | | Portfolio 3 |
rationality A(:,,[)

. . i i set of design d,< D,
Which portfolio would you prefer to invest in?
historical dataset

H

t—1

‘ Portfolio 4 ‘ ‘ None of the above‘ design d, !

L |
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robo-advisor

investor
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Investor Strategy

o Investor Strategy: select the portfolio that aligns best with
investor’s preference, or opt to forgo investing
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Investor Strategy

o Investor Strategy: select the portfolio that aligns best with
investor’s preference, or opt to forgo investing
o r(x): risk preference (if r(x) < 0, the investor is risk-seeking)
o A(x): rationality (if A\(x) — oo, the investor is fully rational)
o d = {(m,w),...,(mg, vg)}: designed investment portfolios
@ m: return mean

@ v: return variance
@ K: the number of portfolios in the design
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Investor Strategy

o Investor Strategy: select the portfolio that aligns best with
investor’s preference, or opt to forgo investing
o r(x): risk preference (if r(x) < 0, the investor is risk-seeking)
o A(x): rationality (if A\(x) — oo, the investor is fully rational)
o d = {(m,w),...,(mg, vg)}: designed investment portfolios
@ m: return mean

@ v: return variance
@ K: the number of portfolios in the design

@ Markowitz’s mean-variance model

exp(A(x)(m — r(x)v,))
>t &P (my = r(x)w))

ply = kix,m,v) =
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Platform Strategy

@ Platform Strategy: collect experimental data to facilitate the
learning of a more accurate behavioral model

e input: contextual information x;
o output: hidden information 75 (x) and Ag(x)

historical dataset 7,
ﬁ( context information x,
[—

o design d, < D, | f contextual
robo-advisor platform behavioral model

parameter g

after 7" period
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PROBLEM
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Platform Strategy

@ Platform Strategy: collect experimental data to facilitate the
learning of a more accurate behavioral model

e input: contextual information x;
o output: hidden information 75 (x) and Ag(x)

historical dataset 7,

parameter g
ﬁ( context information z, @®
_— after 7" period OAAO
[ O
—_J o ] N5
_ esign d, <D, contextual
robo-advisor platform

behavioral model

Platform’s Experimental Design Problem

Given H;_; and x;, how to optimize the design d; € D; for training
an accurate f-parameterized neural network?
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Expected Information Gain

@ Question1: how does the platform select design d?

@ Solution: we select the design to maximize the Expected
Information Gain (EIG)
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Expected Information Gain

@ Question1: how does the platform select design d?

@ Solution: we select the design to maximize the Expected
Information Gain (EIG)

1G(d, y) = H[p(6)] — Hp(6|x, y,d)]

o p(0): prior distribution of 6
o p(B]x, y,d): posterior distribution based on experiment
o H[-]: information entropy

12/24



SoLuTION
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Expected Information Gain

@ Question1: how does the platform select design d?

@ Solution: we select the design to maximize the Expected
Information Gain (EIG)

1G(d, y) = H[p(6)] — Hp(6|x, y,d)]
p(0): prior distribution of 6
p(@|x, y,d): posterior distribution based on experiment

H[-]: information entropy

EIG(d) £ E[IG(d, y)]

the investor choice y depends on the context x and the design
d, its distribution can be estimated

12/24



SoLuTION
[e]e] le]e]ele)

Weight Uncertainty

@ Question2: how to calculate EIG?

e neural network has deterministic weights, making it impossible
to compute information entropy

@ Solution: consider Bayesian neural network
o ¢ = (u, o): parameters of Bayesian neural network

0~ N(u,0)

neural networks Bayesian neural networks
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Weight Uncertainty

e For computational tractability, we employ variational inference
to construct g(0]¢) to approximate p(6|H;—1)

@ the loss function for training Bayesian neural network:

¢ = arg¢min KL[q(6[9)||p(0H:-1)]
= arg¢min KL[q(0]9)I|p(0)] — Eq(o)¢)[log p(#:-116)]

o The first term is the KL divergence, which represents the
difference between the variational distribution and the prior

o The second term represents the deviation between the model
and the collected historical data
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Inference-then-Design

@ We present our Inference-then-Design (ID) method

o Inference: learn ¢ by training Bayesian neural network

o Design: choose the design to maximize the estimated EIG

platform

4 each period t

———— | Inference @

Bayesian neural
networks
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Improved Inference-then-Design Methods

o Integrated Inference-and-Design with Learnable Priors
o Learnable prior: a random initialized prior distribution p(€) will
disrupt the inference step during the early periods
o Integrated Inference-and-Design: separating inference and

design may lead to suboptimal performance, as the
optimization of ¢ fails to maximize information gain

each period t

learnable priors

\T H T
p
C >q(e¢
NN
Design
d \ g

Bayesian neural
networks

platform
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SoLuTION
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Improved Inference-then-Design Methods

@ Loss function for iterative optimization:
e ¢" and d] are the decision variables obtained in 7-th iteration

o Optimize ¢” while keeping d; = d] "
¢’ =argmin KL[q(6]9)||p(0]H:-1)]

— Eqo1¢)[log KL[p(ye|xe, d7 ", 0)||p(yslxe, d7 )]

e Optimize d] while keeping ¢ = ¢™:

di = argdmax/q(0|¢7)IogKL[p(y,|xt,dt,0)||p(yt|xt,dt)]d0
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Experimental Settings

e Our methods

o ID, ID-LP, I-ID-LP

o ID-LP-minEIG, ID-LP-medEIG
e Comparison methods

o PreEntropy, MinMaxPro

Laplacelnfer
Random
o MaxMean, MaxVar

o MaxMean+Var, MaxMean-Var
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Experimental Settings

o Datasets
o Set of design D
o In each period t, the platform utilizes a new set of designs D;
@ The mean m and variance v of returns for portfolios in the design
d; are sampled from a uniform distribution
o Investor information
o Context vector x is generated by uniform distribution

o Five distinct mapping relationships are defined between
contextual information x and hidden information r(x) and A(x)
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REI

e Comparison Among ID Methods
o NLL Loss: the negative log-likelihood loss of predicting investor
choice y in Hest;
o MSEs of Predicting r(x) and A(x): the mean squared errors
between the outputs of the neural network and the actual r(x),
A(x) of investors in Hes.
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Comparison of ID Methods Under Setting A (20 Random Seeds)
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Table: Negative Log-Likelihood Loss on Testing Dataset

Method Setting A Setting B Setting C

ID 0.416 £ 0.025 0.319 £+ 0.017 0.397 £ 0.010
ID-LP 0.409 4 0.025 0.306 & 0.018 0.390 £ 0.007
I-ID-LP 0.408 = 0.029 0.297 £ 0.010 0.387 £ 0.007
ID-LP-minEIG 0.498 4+ 0.012 0.427 4+ 0.026 0.565 + 0.113
ID-LP-medEIG  0.461 £ 0.019 0.331£0.010 0.435 + 0.047
PreEntropy 0.557 £ 0.111 0.366 £ 0.028 0.634 £ 0.216
MinMaxPro 0.611 4 0.122 0.366 % 0.030 0.705 4 0.196
Laplacelnfer 0.462 £0.026  0.327 £0.012  0.411 £ 0.013
Random 0.459 £ 0.022 0.329 £+ 0.012 0.425 £ 0.035
MaxMean 0.468 £ 0.003 0.404 £ 0.045 0.510 4 0.012
MaxVar 0.560 = 0.008 0.340 £ 0.008 0.624 £ 0.010
MaxMean+Var 0.468 £ 0.003 0.336 £ 0.004 0.501 £ 0.003
MaxMean-Var 0.512 +0.013 0.803 & 0.424 0.562 £ 0.063
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Conclusion

@ We propose experimental design methods for learning general
contextual behavioral models

o Challenge: collect more informative data

o Novelty: integrate variational inference with experimental
design
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