BACKGROUND

Haoran Yu 1 Gongtao Zhou

School of Computer Science & Technology Beijing Institute of Technology

AAAI'25

¹Corresponding author.

 Contextual behavior model: user behavior is based on their contextual information

bidding in auctions

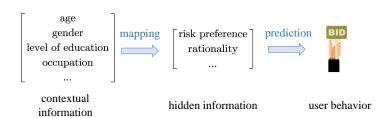
offering in bargainings

selecting in portfolios

BACKGROUND

0000

- Offline Learning: learn the relation between contextual information and user hidden information
 - Cons: require a large offline dataset



- Online learning: design sequential experiments to collect the most informative user behavioral data for learning
 - Cons: strategic environment for user can be designed
- Related work: assume linear context-valuation mappings
- Our work: explore a general setting: (i) mapping can be non-linear (ii) hidden information is multidimensional

collecting dataset (online)

training model (online / offline)

- Online learning: design sequential experiments to collect the most informative user behavioral data for learning
 - Cons: strategic environment for user can be designed
- Related work: assume linear context-valuation mappings
- Our work: explore a general setting: (i) mapping can be non-linear (ii) hidden information is multidimensional

collecting dataset (online)

training model (online / offline)

BACKGROUND

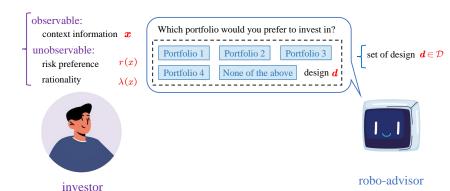
 Question: how to design sequential experiments to learn an accurate contextual behavioral model?

• For simplicity, our problem begins with a single experiment involving one investor

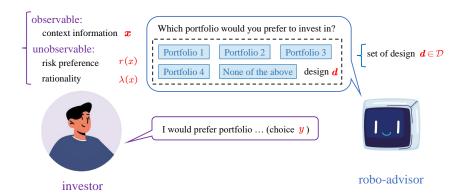


robo-advisor

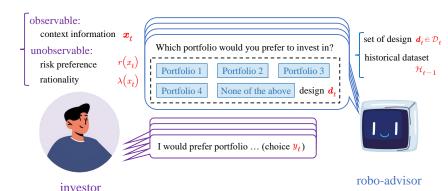
• For simplicity, our problem begins with a single experiment involving one investor



• For simplicity, our problem begins with a single experiment involving one investor



- Sequential experiments: in each period t = 1, 2, ..., T, robo-advisor will interact with investors
 - Investors of each period can be multiple or different
 - historical dataset $\mathcal{H}_{t-1} \triangleq \{ (\mathbf{x}_1, \mathbf{d}_1, y_1), ..., (\mathbf{x}_{t-1}, \mathbf{d}_{t-1}, y_{t-1}) \}$



Investor Strategy

- Investor Strategy: select the portfolio that aligns best with investor's preference, or opt to forgo investing
 - r(x): risk preference (if r(x) < 0, the investor is risk-seeking)
 - $\lambda(\mathbf{x})$: rationality (if $\lambda(\mathbf{x}) \to \infty$, the investor is fully rational)
 - $d = \{(m_1, v_1), ..., (m_K, v_K)\}$: designed investment portfolios
 - m: return mean
 - v: return variance
 - *K*: the number of portfolios in the design
- Markowitz's mean-variance model

$$p(y = k | \mathbf{x}, \mathbf{m}, \mathbf{v}) = \frac{\exp(\lambda(\mathbf{x})(m_k - r(\mathbf{x})v_k))}{\sum_{k=1}^K \exp(\lambda(\mathbf{x})(m_k - r(\mathbf{x})v_k))}$$

Investor Strategy

- Investor Strategy: select the portfolio that aligns best with investor's preference, or opt to forgo investing
 - r(x): risk preference (if r(x) < 0, the investor is risk-seeking)
 - $\lambda(\mathbf{x})$: rationality (if $\lambda(\mathbf{x}) \to \infty$, the investor is fully rational)
 - $d = \{(m_1, v_1), ..., (m_K, v_K)\}$: designed investment portfolios
 - m: return mean
 - v: return variance
 - K: the number of portfolios in the design
- Markowitz's mean-variance model

$$p(y = k | \mathbf{x}, \mathbf{m}, \mathbf{v}) = \frac{\exp(\lambda(\mathbf{x})(m_k - r(\mathbf{x})v_k))}{\sum_{\tilde{k}=1}^K \exp(\lambda(\mathbf{x})(m_{\tilde{k}} - r(\mathbf{x})v_{\tilde{k}}))}$$

Investor Strategy

- Investor Strategy: select the portfolio that aligns best with investor's preference, or opt to forgo investing
 - r(x): risk preference (if r(x) < 0, the investor is risk-seeking)
 - $\lambda(\mathbf{x})$: rationality (if $\lambda(\mathbf{x}) \to \infty$, the investor is fully rational)
 - $d = \{(m_1, v_1), ..., (m_K, v_K)\}$: designed investment portfolios
 - m: return mean
 - v: return variance
 - K: the number of portfolios in the design
- Markowitz's mean-variance model

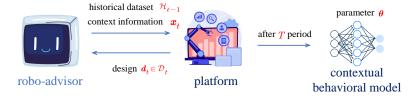
$$p(y = k | \boldsymbol{x}, \boldsymbol{m}, \boldsymbol{v}) = \frac{\exp(\lambda(\boldsymbol{x})(m_k - r(\boldsymbol{x})v_k))}{\sum_{\tilde{k}=1}^K \exp(\lambda(\boldsymbol{x})(m_{\tilde{k}} - r(\boldsymbol{x})v_{\tilde{k}}))}$$

Platform Strategy

- Platform Strategy: collect experimental data to facilitate the learning of a more accurate behavioral model
 - input: contextual information \mathbf{x}_t
 - output: hidden information $\hat{r}_{\theta}(x)$ and $\hat{\lambda}_{\theta}(x)$

Platform Strategy

- Platform Strategy: collect experimental data to facilitate the learning of a more accurate behavioral model
 - input: contextual information x_t
 - output: hidden information $\hat{r}_{\theta}(x)$ and $\hat{\lambda}_{\theta}(x)$



Platform's Experimental Design Problem

Given \mathcal{H}_{t-1} and \mathbf{x}_t , how to optimize the design $\mathbf{d}_t \in \mathcal{D}_t$ for training an accurate θ -parameterized neural network?

Solution

Expected Information Gain

- Question1: how does the platform select design *d*?
- Solution: we select the design to maximize the Expected Information Gain (EIG)

$$IG(d, y) \triangleq H[p(\theta)] - H[p(\theta|x, y, d)]$$

- $p(\theta)$: prior distribution of θ
- $p(\theta|\mathbf{x}, y, \mathbf{d})$: posterior distribution based on experiment
- $H[\cdot]$: information entropy

$$\operatorname{EIG}(d) \triangleq \mathbb{E}[\operatorname{IG}(d, y)]$$

 the investor choice y depends on the context x and the design d, its distribution can be estimated

Expected Information Gain

BACKGROUND

- Question1: how does the platform select design *d*?
- Solution: we select the design to maximize the Expected Information Gain (EIG)

$$IG(d, y) \triangleq H[p(\theta)] - H[p(\theta|\mathbf{x}, y, d)]$$

- $p(\theta)$: prior distribution of θ
- $p(\theta|\mathbf{x}, y, \mathbf{d})$: posterior distribution based on experiment
- $H[\cdot]$: information entropy

$$\operatorname{EIG}(d) \triangleq \mathbb{E}[\operatorname{IG}(d, y)]$$

• the investor choice y depends on the context x and the design

Expected Information Gain

BACKGROUND

- Question1: how does the platform select design *d*?
- Solution: we select the design to maximize the Expected Information Gain (EIG)

$$IG(d, y) \triangleq H[p(\theta)] - H[p(\theta|\mathbf{x}, y, d)]$$

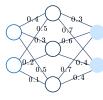
- $p(\theta)$: prior distribution of θ
- $p(\theta|\mathbf{x}, y, \mathbf{d})$: posterior distribution based on experiment
- $H[\cdot]$: information entropy

$$EIG(d) \triangleq \mathbb{E}[IG(d, y)]$$

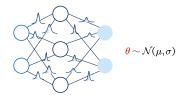
• the investor choice *y* depends on the context *x* and the design **d**, its distribution can be estimated

Weight Uncertainty

- Question2: how to calculate EIG?
 - neural network has deterministic weights, making it impossible to compute information entropy
- Solution: consider Bayesian neural network
 - $\phi = (\mu, \sigma)$: parameters of Bayesian neural network



neural networks



Bayesian neural networks

Weight Uncertainty

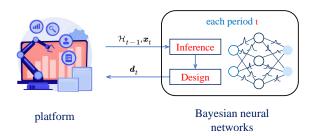
- For computational tractability, we employ variational inference to construct $q(\theta|\phi)$ to approximate $p(\theta|\mathcal{H}_{t-1})$
- the loss function for training Bayesian neural network:

$$\begin{split} \phi^* &= \operatorname*{arg\,min}_{\phi} \operatorname{KL}[q(\boldsymbol{\theta}|\boldsymbol{\phi})||p(\boldsymbol{\theta}|\mathcal{H}_{t-1})] \\ &= \operatorname*{arg\,min}_{\phi} \operatorname{KL}[q(\boldsymbol{\theta}|\boldsymbol{\phi})||p(\boldsymbol{\theta})] - \mathbb{E}_{q(\boldsymbol{\theta}|\boldsymbol{\phi})}[\log p(\mathcal{H}_{t-1}|\boldsymbol{\theta})] \end{split}$$

- The first term is the KL divergence, which represents the difference between the variational distribution and the prior
- The second term represents the deviation between the model and the collected historical data

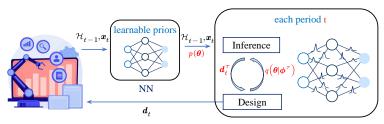
Inference-then-Design

- We present our Inference-then-Design (ID) method
 - Inference: learn ϕ by training Bayesian neural network
 - Design: choose the design to maximize the estimated EIG



Improved Inference-then-Design Methods

- Integrated Inference-and-Design with Learnable Priors
 - Learnable prior: a random initialized prior distribution $p(\theta)$ will disrupt the inference step during the early periods
 - Integrated Inference-and-Design: separating inference and design may lead to suboptimal performance, as the optimization of ϕ fails to maximize information gain



platform

Bayesian neural

BACKGROUND

- Loss function for iterative optimization:
 - ϕ^{τ} and \mathbf{d}_{t}^{τ} are the decision variables obtained in τ -th iteration
 - Optimize ϕ^{τ} while keeping $\mathbf{d}_t = \mathbf{d}_t^{\tau-1}$:

$$\begin{split} \boldsymbol{\phi}^{\tau} &= \operatorname*{arg\;min} \mathrm{KL}[q(\boldsymbol{\theta}|\boldsymbol{\phi})||p(\boldsymbol{\theta}|\mathcal{H}_{t-1})] \\ &- \mathbb{E}_{q(\boldsymbol{\theta}|\boldsymbol{\phi})}[\log \mathrm{KL}[p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t^{\tau-1},\boldsymbol{\theta})||p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t^{\tau-1})]] \end{split}$$

• Optimize \mathbf{d}_t^{τ} while keeping $\phi = \phi^{\tau}$:

$$\boldsymbol{d}_t^{\tau} = \argmax_{\boldsymbol{d}_t} \int q(\boldsymbol{\theta}|\boldsymbol{\phi}^{\tau}) \log \mathrm{KL}[p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t,\boldsymbol{\theta})||p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t)] d\boldsymbol{\theta}$$

Experiments

Experimental Settings

- Our methods
 - ID, ID-LP, I-ID-LP
 - ID-LP-minEIG, ID-LP-medEIG
- Comparison methods
 - PreEntropy, MinMaxPro
 - LaplaceInfer
 - Random
 - MaxMean, MaxVar
 - MaxMean+Var, MaxMean-Var

Experimental Settings

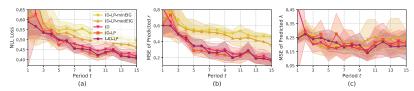
Datasets

- Set of design \mathcal{D}
 - In each period t, the platform utilizes a new set of designs \mathcal{D}_t
 - The mean m and variance v of returns for portfolios in the design d_t are sampled from a uniform distribution
- Investor information
 - Context vector x is generated by uniform distribution
 - Five distinct mapping relationships are defined between contextual information **x** and hidden information $r(\mathbf{x})$ and $\lambda(\mathbf{x})$

Results

Comparison Among ID Methods

- NLL Loss: the negative log-likelihood loss of predicting investor choice y in \mathcal{H}_{test} ;
- MSEs of Predicting $r(\mathbf{x})$ and $\lambda(\mathbf{x})$: the mean squared errors between the outputs of the neural network and the actual $r(\mathbf{x})$, $\lambda(\mathbf{x})$ of investors in \mathcal{H}_{test} .



Comparison of ID Methods Under Setting A (20 Random Seeds)

Results

Table: Negative Log-Likelihood Loss on Testing Dataset

Method	Setting A	Setting B	Setting C
ID	0.416 ± 0.025	0.319 ± 0.017	0.397 ± 0.010
ID-LP	0.409 ± 0.025	$\textbf{0.306} \pm \textbf{0.018}$	0.390 ± 0.007
I-ID-LP	$\textbf{0.408} \pm \textbf{0.029}$	$\textbf{0.297} \pm \textbf{0.010}$	$\textbf{0.387} \pm \textbf{0.007}$
ID-LP-minEIG	0.498 ± 0.012	0.427 ± 0.026	0.565 ± 0.113
ID-LP-medEIG	0.461 ± 0.019	0.331 ± 0.010	0.435 ± 0.047
PreEntropy	0.557 ± 0.111	$\textbf{0.366} \pm \textbf{0.028}$	0.634 ± 0.216
MinMaxPro	0.611 ± 0.122	$\textbf{0.366} \pm \textbf{0.030}$	0.705 ± 0.196
LaplaceInfer	0.462 ± 0.026	0.327 ± 0.012	0.411 ± 0.013
Random	0.459 ± 0.022	0.329 ± 0.012	0.425 ± 0.035
MaxMean	0.468 ± 0.003	0.404 ± 0.045	0.510 ± 0.012
MaxVar	0.560 ± 0.008	$\textbf{0.340} \pm \textbf{0.008}$	0.624 ± 0.010
MaxMean+Var	0.468 ± 0.003	$\textbf{0.336} \pm \textbf{0.004}$	0.501 ± 0.003
MaxMean-Var	0.512 ± 0.013	0.803 ± 0.424	0.562 ± 0.063

Conclusion

- We propose experimental design methods for learning general contextual behavioral models
 - Challenge: collect more informative data
 - Novelty: integrate variational inference with experimental design

