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Contextual Behavioral Model

Contextual behavior model: user behavior is based on their
contextual information
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Contextual Behavioral Model

Offline Learning: learn the relation between contextual
information and user hidden information

Cons: require a large offline dataset
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Contextual Behavioral Model

Online learning: design sequential experiments to collect the
most informative user behavioral data for learning

Cons: strategic environment for user can be designed

Related work: assume linear context-valuation mappings

Our work: explore a general setting: (i) mapping can be
non-linear (ii) hidden information is multidimensional

collecting dataset
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(online / offline)
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Contextual Behavioral Model

Question: how to design sequential experiments to learn an
accurate contextual behavioral model?
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Problem
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Portfolio Choice

For simplicity, our problem begins with a single experiment
involving one investor
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Portfolio Choice

Sequential experiments: in each period t = 1, 2, ..., T ,
robo-advisor will interact with investors

Investors of each period can be multiple or different

historical datasetHt−1 ≜ {(x1,d1, y1) , ..., (xt−1,dt−1, yt−1)}

investor

context information

observable:

unobservable:

risk preference

rationality

robo-advisor

set of design
Which portfolio would you prefer to invest in?

Portfolio 1

designPortfolio 4

Portfolio 2 Portfolio 3

None of the above

I would prefer portfolio … (choice     )

historical dataset
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Investor Strategy

Investor Strategy: select the portfolio that aligns best with
investor’s preference, or opt to forgo investing

r(x): risk preference (if r(x) < 0, the investor is risk-seeking)
λ(x): rationality (if λ(x) → ∞, the investor is fully rational)
d = {(m1, v1), ..., (mK , vK )}: designed investment portfolios

m: return mean
v : return variance
K : the number of portfolios in the design

Markowitz’s mean-variance model

p(y = k|x,m, v) =
exp(λ(x)(mk − r(x)vk))∑K
k̃=1 exp(λ(x)(mk̃ − r(x)vk̃))
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Platform Strategy

Platform Strategy: collect experimental data to facilitate the
learning of a more accurate behavioral model

input: contextual information xt
output: hidden information r̂θ(x) and λ̂θ(x)

robo-advisor platform

after     period

historical dataset

context information

design contextual  

behavioral model

parameter
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input: contextual information xt
output: hidden information r̂θ(x) and λ̂θ(x)
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Platform’s Experimental Design Problem
GivenHt−1 and xt , how to optimize the design dt ∈ Dt for training
an accurate θ-parameterized neural network?
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Solution
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Expected Information Gain

Question1: how does the platform select design d?

Solution: we select the design to maximize the Expected
Information Gain (EIG)

IG(d, y) ≜ H[p(θ)]− H[p(θ|x, y,d)]
p(θ): prior distribution of θ
p(θ|x, y,d): posterior distribution based on experiment
H[·]: information entropy

EIG(d) ≜ E[IG(d, y)]
the investor choice y depends on the context x and the design
d, its distribution can be estimated
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Weight Uncertainty

Question2: how to calculate EIG?
neural network has deterministic weights, making it impossible
to compute information entropy

Solution: consider Bayesian neural network
ϕ = (µ,σ): parameters of Bayesian neural network

neural networks Bayesian neural networks
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Weight Uncertainty

For computational tractability, we employ variational inference
to construct q(θ|ϕ) to approximate p(θ|Ht−1)

the loss function for training Bayesian neural network:

ϕ∗ = argmin
ϕ

KL[q(θ|ϕ)||p(θ|Ht−1)]

= argmin
ϕ

KL[q(θ|ϕ)||p(θ)]− Eq(θ|ϕ)[log p(Ht−1|θ)]

The first term is the KL divergence, which represents the
difference between the variational distribution and the prior

The second term represents the deviation between the model
and the collected historical data
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Inference-then-Design

We present our Inference-then-Design (ID) method

Inference: learn ϕ by training Bayesian neural network

Design: choose the design to maximize the estimated EIG

Inference

platform

each period t

Bayesian neural 
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Design
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Improved Inference-then-Design Methods

Integrated Inference-and-Design with Learnable Priors
Learnable prior: a random initialized prior distribution p(θ) will
disrupt the inference step during the early periods

Integrated Inference-and-Design: separating inference and
design may lead to suboptimal performance, as the
optimization of ϕ fails to maximize information gain

Inference

platform

each period t

Bayesian neural 

networks

Design

NN

learnable priors
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Improved Inference-then-Design Methods

Loss function for iterative optimization:

ϕτ and dτ
t are the decision variables obtained in τ -th iteration

Optimize ϕτ while keeping dt = dτ−1
t :

ϕτ =argmin
ϕ

KL[q(θ|ϕ)||p(θ|Ht−1)]

− Eq(θ|ϕ)[logKL[p(yt |xt ,dτ−1
t ,θ)||p(yt |xt ,dτ−1

t )]]

Optimize dτ
t while keeping ϕ = ϕτ :

dτ
t = argmax

dt

∫
q(θ|ϕτ ) logKL[p(yt |xt ,dt ,θ)||p(yt |xt ,dt)]dθ
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Experiments
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Experimental Settings

Our methods
ID, ID-LP, I-ID-LP
ID-LP-minEIG, ID-LP-medEIG

Comparison methods

PreEntropy,MinMaxPro
LaplaceInfer
Random
MaxMean, MaxVar
MaxMean+Var,MaxMean-Var
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Experimental Settings

Datasets
Set of design D

In each period t , the platform utilizes a new set of designs Dt

The mean m and variance v of returns for portfolios in the design
dt are sampled from a uniform distribution

Investor information
Context vector x is generated by uniform distribution

Five distinct mapping relationships are defined between
contextual information x and hidden information r(x) and λ(x)
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Results

Comparison Among ID Methods
NLL Loss: the negative log-likelihood loss of predicting investor
choice y in Htest ;

MSEs of Predicting r(x) and λ(x): the mean squared errors
between the outputs of the neural network and the actual r(x),
λ(x) of investors in Htest .

Comparison of ID Methods Under Setting A (20 Random Seeds)
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Results

Table: Negative Log-Likelihood Loss on Testing Dataset

Method Setting A Setting B Setting C
ID 0.416 ± 0.025 0.319 ± 0.017 0.397 ± 0.010
ID-LP 0.409 ± 0.025 0.306 ± 0.018 0.390 ± 0.007
I-ID-LP 0.408 ± 0.029 0.297 ± 0.010 0.387 ± 0.007
ID-LP-minEIG 0.498 ± 0.012 0.427 ± 0.026 0.565 ± 0.113
ID-LP-medEIG 0.461 ± 0.019 0.331 ± 0.010 0.435 ± 0.047
PreEntropy 0.557 ± 0.111 0.366 ± 0.028 0.634 ± 0.216
MinMaxPro 0.611 ± 0.122 0.366 ± 0.030 0.705 ± 0.196
LaplaceInfer 0.462 ± 0.026 0.327 ± 0.012 0.411 ± 0.013
Random 0.459 ± 0.022 0.329 ± 0.012 0.425 ± 0.035
MaxMean 0.468 ± 0.003 0.404 ± 0.045 0.510 ± 0.012
MaxVar 0.560 ± 0.008 0.340 ± 0.008 0.624 ± 0.010
MaxMean+Var 0.468 ± 0.003 0.336 ± 0.004 0.501 ± 0.003
MaxMean–Var 0.512 ± 0.013 0.803 ± 0.424 0.562 ± 0.063
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Conclusion

We propose experimental design methods for learning general
contextual behavioral models

Challenge: collect more informative data

Novelty: integrate variational inference with experimental
design
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