BACKGROUND Haoran Yu 1 Gongtao Zhou School of Computer Science & Technology Beijing Institute of Technology AAAI'25 ¹Corresponding author. Contextual behavior model: user behavior is based on their contextual information bidding in auctions offering in bargainings selecting in portfolios BACKGROUND 0000 - Offline Learning: learn the relation between contextual information and user hidden information - Cons: require a large offline dataset - Online learning: design sequential experiments to collect the most informative user behavioral data for learning - Cons: strategic environment for user can be designed - Related work: assume linear context-valuation mappings - Our work: explore a general setting: (i) mapping can be non-linear (ii) hidden information is multidimensional collecting dataset (online) training model (online / offline) - Online learning: design sequential experiments to collect the most informative user behavioral data for learning - Cons: strategic environment for user can be designed - Related work: assume linear context-valuation mappings - Our work: explore a general setting: (i) mapping can be non-linear (ii) hidden information is multidimensional collecting dataset (online) training model (online / offline) BACKGROUND Question: how to design sequential experiments to learn an accurate contextual behavioral model? • For simplicity, our problem begins with a single experiment involving one investor robo-advisor • For simplicity, our problem begins with a single experiment involving one investor • For simplicity, our problem begins with a single experiment involving one investor - Sequential experiments: in each period t = 1, 2, ..., T, robo-advisor will interact with investors - Investors of each period can be multiple or different - historical dataset $\mathcal{H}_{t-1} \triangleq \{ (\mathbf{x}_1, \mathbf{d}_1, y_1), ..., (\mathbf{x}_{t-1}, \mathbf{d}_{t-1}, y_{t-1}) \}$ ## **Investor Strategy** - Investor Strategy: select the portfolio that aligns best with investor's preference, or opt to forgo investing - r(x): risk preference (if r(x) < 0, the investor is risk-seeking) - $\lambda(\mathbf{x})$: rationality (if $\lambda(\mathbf{x}) \to \infty$, the investor is fully rational) - $d = \{(m_1, v_1), ..., (m_K, v_K)\}$: designed investment portfolios - m: return mean - v: return variance - *K*: the number of portfolios in the design - Markowitz's mean-variance model $$p(y = k | \mathbf{x}, \mathbf{m}, \mathbf{v}) = \frac{\exp(\lambda(\mathbf{x})(m_k - r(\mathbf{x})v_k))}{\sum_{k=1}^K \exp(\lambda(\mathbf{x})(m_k - r(\mathbf{x})v_k))}$$ # **Investor Strategy** - Investor Strategy: select the portfolio that aligns best with investor's preference, or opt to forgo investing - r(x): risk preference (if r(x) < 0, the investor is risk-seeking) - $\lambda(\mathbf{x})$: rationality (if $\lambda(\mathbf{x}) \to \infty$, the investor is fully rational) - $d = \{(m_1, v_1), ..., (m_K, v_K)\}$: designed investment portfolios - m: return mean - v: return variance - K: the number of portfolios in the design - Markowitz's mean-variance model $$p(y = k | \mathbf{x}, \mathbf{m}, \mathbf{v}) = \frac{\exp(\lambda(\mathbf{x})(m_k - r(\mathbf{x})v_k))}{\sum_{\tilde{k}=1}^K \exp(\lambda(\mathbf{x})(m_{\tilde{k}} - r(\mathbf{x})v_{\tilde{k}}))}$$ # **Investor Strategy** - Investor Strategy: select the portfolio that aligns best with investor's preference, or opt to forgo investing - r(x): risk preference (if r(x) < 0, the investor is risk-seeking) - $\lambda(\mathbf{x})$: rationality (if $\lambda(\mathbf{x}) \to \infty$, the investor is fully rational) - $d = \{(m_1, v_1), ..., (m_K, v_K)\}$: designed investment portfolios - m: return mean - v: return variance - K: the number of portfolios in the design - Markowitz's mean-variance model $$p(y = k | \boldsymbol{x}, \boldsymbol{m}, \boldsymbol{v}) = \frac{\exp(\lambda(\boldsymbol{x})(m_k - r(\boldsymbol{x})v_k))}{\sum_{\tilde{k}=1}^K \exp(\lambda(\boldsymbol{x})(m_{\tilde{k}} - r(\boldsymbol{x})v_{\tilde{k}}))}$$ # **Platform Strategy** - Platform Strategy: collect experimental data to facilitate the learning of a more accurate behavioral model - input: contextual information \mathbf{x}_t - output: hidden information $\hat{r}_{\theta}(x)$ and $\hat{\lambda}_{\theta}(x)$ # **Platform Strategy** - Platform Strategy: collect experimental data to facilitate the learning of a more accurate behavioral model - input: contextual information x_t - output: hidden information $\hat{r}_{\theta}(x)$ and $\hat{\lambda}_{\theta}(x)$ #### Platform's Experimental Design Problem Given \mathcal{H}_{t-1} and \mathbf{x}_t , how to optimize the design $\mathbf{d}_t \in \mathcal{D}_t$ for training an accurate θ -parameterized neural network? # **Solution** # **Expected Information Gain** - Question1: how does the platform select design *d*? - Solution: we select the design to maximize the Expected Information Gain (EIG) $$IG(d, y) \triangleq H[p(\theta)] - H[p(\theta|x, y, d)]$$ - $p(\theta)$: prior distribution of θ - $p(\theta|\mathbf{x}, y, \mathbf{d})$: posterior distribution based on experiment - $H[\cdot]$: information entropy $$\operatorname{EIG}(d) \triangleq \mathbb{E}[\operatorname{IG}(d, y)]$$ the investor choice y depends on the context x and the design d, its distribution can be estimated # **Expected Information Gain** BACKGROUND - Question1: how does the platform select design *d*? - Solution: we select the design to maximize the Expected Information Gain (EIG) $$IG(d, y) \triangleq H[p(\theta)] - H[p(\theta|\mathbf{x}, y, d)]$$ - $p(\theta)$: prior distribution of θ - $p(\theta|\mathbf{x}, y, \mathbf{d})$: posterior distribution based on experiment - $H[\cdot]$: information entropy $$\operatorname{EIG}(d) \triangleq \mathbb{E}[\operatorname{IG}(d, y)]$$ • the investor choice y depends on the context x and the design # **Expected Information Gain** BACKGROUND - Question1: how does the platform select design *d*? - Solution: we select the design to maximize the Expected Information Gain (EIG) $$IG(d, y) \triangleq H[p(\theta)] - H[p(\theta|\mathbf{x}, y, d)]$$ - $p(\theta)$: prior distribution of θ - $p(\theta|\mathbf{x}, y, \mathbf{d})$: posterior distribution based on experiment - $H[\cdot]$: information entropy $$EIG(d) \triangleq \mathbb{E}[IG(d, y)]$$ • the investor choice *y* depends on the context *x* and the design **d**, its distribution can be estimated # Weight Uncertainty - Question2: how to calculate EIG? - neural network has deterministic weights, making it impossible to compute information entropy - Solution: consider Bayesian neural network - $\phi = (\mu, \sigma)$: parameters of Bayesian neural network neural networks Bayesian neural networks # Weight Uncertainty - For computational tractability, we employ variational inference to construct $q(\theta|\phi)$ to approximate $p(\theta|\mathcal{H}_{t-1})$ - the loss function for training Bayesian neural network: $$\begin{split} \phi^* &= \operatorname*{arg\,min}_{\phi} \operatorname{KL}[q(\boldsymbol{\theta}|\boldsymbol{\phi})||p(\boldsymbol{\theta}|\mathcal{H}_{t-1})] \\ &= \operatorname*{arg\,min}_{\phi} \operatorname{KL}[q(\boldsymbol{\theta}|\boldsymbol{\phi})||p(\boldsymbol{\theta})] - \mathbb{E}_{q(\boldsymbol{\theta}|\boldsymbol{\phi})}[\log p(\mathcal{H}_{t-1}|\boldsymbol{\theta})] \end{split}$$ - The first term is the KL divergence, which represents the difference between the variational distribution and the prior - The second term represents the deviation between the model and the collected historical data # Inference-then-Design - We present our Inference-then-Design (ID) method - Inference: learn ϕ by training Bayesian neural network - Design: choose the design to maximize the estimated EIG ## Improved Inference-then-Design Methods - Integrated Inference-and-Design with Learnable Priors - Learnable prior: a random initialized prior distribution $p(\theta)$ will disrupt the inference step during the early periods - Integrated Inference-and-Design: separating inference and design may lead to suboptimal performance, as the optimization of ϕ fails to maximize information gain platform Bayesian neural BACKGROUND - Loss function for iterative optimization: - ϕ^{τ} and \mathbf{d}_{t}^{τ} are the decision variables obtained in τ -th iteration - Optimize ϕ^{τ} while keeping $\mathbf{d}_t = \mathbf{d}_t^{\tau-1}$: $$\begin{split} \boldsymbol{\phi}^{\tau} &= \operatorname*{arg\;min} \mathrm{KL}[q(\boldsymbol{\theta}|\boldsymbol{\phi})||p(\boldsymbol{\theta}|\mathcal{H}_{t-1})] \\ &- \mathbb{E}_{q(\boldsymbol{\theta}|\boldsymbol{\phi})}[\log \mathrm{KL}[p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t^{\tau-1},\boldsymbol{\theta})||p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t^{\tau-1})]] \end{split}$$ • Optimize \mathbf{d}_t^{τ} while keeping $\phi = \phi^{\tau}$: $$\boldsymbol{d}_t^{\tau} = \argmax_{\boldsymbol{d}_t} \int q(\boldsymbol{\theta}|\boldsymbol{\phi}^{\tau}) \log \mathrm{KL}[p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t,\boldsymbol{\theta})||p(y_t|\boldsymbol{x}_t,\boldsymbol{d}_t)] d\boldsymbol{\theta}$$ # Experiments # **Experimental Settings** - Our methods - ID, ID-LP, I-ID-LP - ID-LP-minEIG, ID-LP-medEIG - Comparison methods - PreEntropy, MinMaxPro - LaplaceInfer - Random - MaxMean, MaxVar - MaxMean+Var, MaxMean-Var # **Experimental Settings** #### Datasets - Set of design \mathcal{D} - In each period t, the platform utilizes a new set of designs \mathcal{D}_t - The mean m and variance v of returns for portfolios in the design d_t are sampled from a uniform distribution - Investor information - Context vector x is generated by uniform distribution - Five distinct mapping relationships are defined between contextual information **x** and hidden information $r(\mathbf{x})$ and $\lambda(\mathbf{x})$ #### Results #### Comparison Among ID Methods - NLL Loss: the negative log-likelihood loss of predicting investor choice y in \mathcal{H}_{test} ; - MSEs of Predicting $r(\mathbf{x})$ and $\lambda(\mathbf{x})$: the mean squared errors between the outputs of the neural network and the actual $r(\mathbf{x})$, $\lambda(\mathbf{x})$ of investors in \mathcal{H}_{test} . Comparison of ID Methods Under Setting A (20 Random Seeds) ### Results Table: Negative Log-Likelihood Loss on Testing Dataset | Method | Setting A | Setting B | Setting C | |--------------|-------------------------------------|-------------------------------------|-------------------------------------| | ID | 0.416 ± 0.025 | 0.319 ± 0.017 | 0.397 ± 0.010 | | ID-LP | 0.409 ± 0.025 | $\textbf{0.306} \pm \textbf{0.018}$ | 0.390 ± 0.007 | | I-ID-LP | $\textbf{0.408} \pm \textbf{0.029}$ | $\textbf{0.297} \pm \textbf{0.010}$ | $\textbf{0.387} \pm \textbf{0.007}$ | | ID-LP-minEIG | 0.498 ± 0.012 | 0.427 ± 0.026 | 0.565 ± 0.113 | | ID-LP-medEIG | 0.461 ± 0.019 | 0.331 ± 0.010 | 0.435 ± 0.047 | | PreEntropy | 0.557 ± 0.111 | $\textbf{0.366} \pm \textbf{0.028}$ | 0.634 ± 0.216 | | MinMaxPro | 0.611 ± 0.122 | $\textbf{0.366} \pm \textbf{0.030}$ | 0.705 ± 0.196 | | LaplaceInfer | 0.462 ± 0.026 | 0.327 ± 0.012 | 0.411 ± 0.013 | | Random | 0.459 ± 0.022 | 0.329 ± 0.012 | 0.425 ± 0.035 | | MaxMean | 0.468 ± 0.003 | 0.404 ± 0.045 | 0.510 ± 0.012 | | MaxVar | 0.560 ± 0.008 | $\textbf{0.340} \pm \textbf{0.008}$ | 0.624 ± 0.010 | | MaxMean+Var | 0.468 ± 0.003 | $\textbf{0.336} \pm \textbf{0.004}$ | 0.501 ± 0.003 | | MaxMean-Var | 0.512 ± 0.013 | 0.803 ± 0.424 | 0.562 ± 0.063 | #### **Conclusion** - We propose experimental design methods for learning general contextual behavioral models - Challenge: collect more informative data - Novelty: integrate variational inference with experimental design