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Bilateral Bargaining

@ One seller and one buyer negotiate the price of an item.

@ E-commerce platforms: eBay, Xianyu.

Shop by

€ | Backto My eBay | Listed in category: Colle

Review and confirm offer
Your offer :

US $111.00
Shipping:  See item description

Note:-

There are over 90 million such listings on eBay during 2012~2013.
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Inferring Private Valuations in Bargaining

@ Question: How to infer sellers’ and buyers’ private valuations
on items from their bargaining behaviors?

e This work focuses on inferring sellers’ private valuations.
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e What is the seller’s valuation for the bicycle? Lie in (50, 75]?

7/30



PROBLEM
00@00000

Inferring Private Valuations in Bargaining

o Seller’s private valuation: lowest price that seller will accept
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Dedme - $90

Accept

e What is the seller’s valuation for the bicycle? Lie in (50, 75]?

o Given more data about this seller (possibly on other items), we may
learn his bargaining strategy and infer a more accurate valuation.
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@ We first focus on one seller who sells multiple items.
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Problem Description

o Denote observable data as {(x]", /") } ez mem

e x': history of the bargaining (between the seller and a buyer)

e y™: seller decision (i.e., accept, decline, or a counter-offer)
o m: item index

e i: data point index
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o Denote observable data as {(x]", /") } ez mem

e x': history of the bargaining (between the seller and a buyer)

e y™: seller decision (i.e., accept, decline, or a counter-offer)
o m: item index

e i: data point index

@ $100 @ $100 g
— ., ——
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$70
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(7, y7") = ([100, 50] , Decline) (x5, y5") = ([100, 70] , 90)
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Problem Description

o Denote observable data as {(x]", /") } ez mem

e x': history of the bargaining (between the seller and a buyer)
e y™: seller decision (i.e., accept, decline, or a counter-offer)

o m: item index
e i: data point index

@ $100
—

& o Du cline

item m

(1", y1") = ({100, 50] , Decline)

@ - g
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(5", y5") = ([100,70], 90)
(x5, y3") = ([100, 70,90, 75] , Accept)
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Problem Description

o Denote observable data as {(x]", /") }ic7 mem

x: history of the bargaining (between the seller and a buyer)
y™: seller decision (i.e., accept, decline, or a counter-offer)

m: item index

i: data point index

e Denote seller’s valuation for item m as v (unobservable).

Private Valuation Inference Problem

Given {(x]", ¥/")}icz menp hOw to infer {v™} 2
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e Use fp (-, -) to denote seller’s behavior function

m m m
Jo (V7. x{") - Yi
——

distribution of predicted decision observed decision

@ If @ are known, we can infer v using Bayes’ Rule:

Pr (v = v[{(x]",y")}icz,0)
_ Prprior (Vm = V) Pr ({yim}iel' ’Vm =V, {x;n}ieI ) 0)
Z; Prprior (Vm = \7) Pr ({yim}iel' |Vm = T/’ {x;ﬂ}ieI ) 0)
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e Use fp (-, -) to denote seller’s behavior function

m m m
Jo (V7. x{") - Yi
——

distribution of predicted decision observed decision

@ If @ are known, we can infer v using Bayes’ Rule:

Pr (v = v[{(x]",y")}icz,0)
_ Prprior (Vm = V) Pr ({yim}iel' ’Vm =V, {x;n}ieI ) 0)
Z; Prprior (Vm = \7) Pr ({yim}iel' |Vm = T/’ {x;ﬂ}ieI ) 0)

@ Possible solution: Assume fy (-, -) is an equilibrium strategy.
o Weakness: Sellers have heterogeneous rationalities and beliefs.
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e Use fp (-, -) to denote seller’s behavior function

m m m
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distribution of predicted decision observed decision

@ If @ are known, we can infer v using Bayes’ Rule:

Pr(v™ = vI{(x",y")}icz )
_ Prprior (Vm = V) Pr ({yim}iel' ’Vm =V, {x;'ﬂ}ieI ) 0)
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@ Our solution: Model fy (-, -) via GRU (0 are trainable weights).
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Seller Behavior Function

e Use fp (-, -) to denote seller’s behavior function

m m m
Jo (V7. x{") - Yi
——

distribution of predicted decision observed decision

@ If @ are known, we can infer v using Bayes’ Rule:

Pr(v™ = vI{(x",y")}icz )
_ Prprior (Vm = V) Pr ({yim}iel' ’Vm =V, {x;'ﬂ}ieI ) 0)
Z; Prprior (Vm = T/) Pr ({yim}iel' |Vm = V’ {x;ﬂ}iez ) 0)

@ Our solution: Model fy (-, -) via GRU (0 are trainable weights).

e Challenge: How to train GRU on{(x/", y/")}, . to get 67?
It is not a standard supervised learning problem.
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Feasible Interval of Valuation v"”

@ Assumption: seller never chooses strictly dominated decisions.

@ We can then derive a feasible interval of v'™ from observed data.
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Feasible Interval of Valuation v"”

@ Assumption: seller never chooses strictly dominated decisions.

@ We can then derive a feasible interval of v'™ from observed data
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(25',95") = ([100,70], 90)
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Feasible Interval of Valuation v"”

@ Assumption: seller never chooses strictly dominated decisions.

@ We can then derive a feasible interval of v'™ from observed data
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(21", y7") = ([100, 50] , Decline) (x5, y5") = ([100,70] , 90)

™ > 50 v™ < 90 o™ < 75 (:E;nvygn) = ([1007703907 75] ,Accept)
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Feasible Interval of Valuation v"”

@ Assumption: seller never chooses strictly dominated decisions.

@ We can then derive a feasible interval of v'™ from observed data
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(21", y7") = ([100, 50] , Decline) (x5, y5") = ([100,70] , 90)

Vf,:ﬁ‘g;h]n o™ > 50 o™ < 90 o™ < 75 (:E;nvygn) = ([1007703907 75] ,Accept)
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e (i) minimize distance between predicted and observed decisions

o (ii) maximize probability that inferred v lies in feasible interval

21/30



SoLuTioN
00000000800

Learning of 0

@ We learn 0 by minimizing following loss function on data:

Z Z CrossEntropy < 9 <v5”;mple,x§"> , y,’”)

meM i€l
— > log Pr (v € Ve {7 ¥} iez ,0)
meM

e (i) minimize distance between predicted and observed decisions

o (ii) maximize probability that inferred v lies in feasible interval

o After learning 0, we infer {v™} .
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e Homogeneous behavior function: fp

e Heterogeneous behavior function: fg,, ..., fo,
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Extension: Heterogeneous f,

e Homogeneous behavior function: fp

e Heterogeneous behavior function: fg,, ..., fo,

Clustering Phase Learning Phase

partition sellers into K clusters learn behavior functions separately
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e Comparison methods
e Our method (homo./hetero.)

o Single learning (homo./hetero.)

o Dual learning (homo./hetero.)
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Experimental Settings

e Comparison methods
e Our method (homo./hetero.)
o Single learning (homo./hetero.)

o Dual learning (homo./hetero.)

e Datasets
o Synthetic dataset: 900 sellers, 120,000 bargaining threads

o We use different theoretical models to simulate human behaviors.
o Ground truth (i.e., v™) is known.

o Real dataset: 30,000+ sellers, 300,000+ bargaining threads

e Ground truth (i.e., v™) is not known.
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e Synthetic validation data (10% of all synthetic data)
o The randomly generated v belongs to {10, 14, ...,94,98}.

500 q‘ |

Mean Square Error

T e 8-9-0--9--9--8--(

0 20 40 60 80 100
Iterations

MSEs of Inferred v Under Different Schemes (Averaged Over Six Runs).
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o Real testing data (10% of all real data)

o Ratio: fraction of inferred v satisfying secrete bounds.

8077.03£0.97

154239 66 5411 28
63.18+2.65 163.9&2.14

L

Ratios Under Different Schemes (Averaged Over Six Runs).
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Conclusion

@ We propose a private valuation inference method based on ML.

o Challenge: valuation is not observable.

o Novelty: define feasible interval, and include it in a new loss
function to guide learning.
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Publication

e Lvye Cui and Haoran Yu, “Inferring Private Valuations from
Behavioral Data in Bilateral Sequential Bargaining,’
International Joint Conference on Artificial Intelligence (IJCAI),
Macao, China, August 2023.
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