
Background Problem Solution Experiments

Inferring Private Valuations from Behavioral
Data in Bilateral Sequential Bargaining

Lvye Cui and Haoran Yu

School of Computer Science & Technology

Beijing Institute of Technology

May 2023

1 / 30



Background Problem Solution Experiments

Background

2 / 30



Background Problem Solution Experiments
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One seller and one buyer negotiate the price of an item.

E-commerce platforms: eBay, Xianyu.
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Inferring Private Valuations in Bargaining

�estion: How to infer sellers’ and buyers’ private valuations
on items from their bargaining behaviors?

This work focuses on inferring sellers’ private valuations.
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What is the seller’s valuation for the bicycle? Lie in (50, 75]?
Given more data about this seller (possibly on other items), we may
learn his bargaining strategy and infer a more accurate valuation.

7 / 30



Background Problem Solution Experiments

Inferring Private Valuations in Bargaining

Seller’s private valuation: lowest price that seller will accept

$100

$70

$90

$75

Accept

$100

$50

Decline

What is the seller’s valuation for the bicycle? Lie in (50, 75]?
Given more data about this seller (possibly on other items), we may
learn his bargaining strategy and infer a more accurate valuation.

7 / 30



Background Problem Solution Experiments

Problem Description

We first focus on one seller who sells multiple items.

Denote observable data as {(xmi , ymi )}i∈I,m∈M
xmi : history of the bargaining (between the seller and a buyer)
ymi : seller decision (i.e., accept, decline, or a counter-o�er)
m: item index
i: data point index
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Problem Description

Denote observable data as {(xmi , ymi )}i∈I,m∈M
xmi : history of the bargaining (between the seller and a buyer)
ymi : seller decision (i.e., accept, decline, or a counter-o�er)
m: item index
i: data point index

Denote seller’s valuation for item m as vm (unobservable).

Private Valuation Inference Problem
Given {(xmi , ymi )}i∈I,m∈M, how to infer {vm}m∈M?
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Seller Behavior Function

Use fθ (·, ·) to denote seller’s behavior function

fθ (v
m, xmi )︸ ︷︷ ︸

distribution of predicted decision

→ ymi︸︷︷︸
observed decision

If θ are known, we can infer vm using Bayes’ Rule:

Pr
(
vm = v| {(xmi , ymi )}i∈I ,θ

)
=

Prprior (vm = v)Pr
(
{ymi }i∈I |vm = v, {xmi }i∈I ,θ

)∑
ṽ Prprior (v

m = ṽ)Pr
(
{ymi }i∈I |vm = ṽ, {xmi }i∈I ,θ

) .
Possible solution: Assume fθ (·, ·) is an equilibrium strategy.

Weakness: Sellers have heterogeneous rationalities and beliefs.
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) .
Possible solution: Assume fθ (·, ·) is an equilibrium strategy.

Weakness: Sellers have heterogeneous rationalities and beliefs.

14 / 30



Background Problem Solution Experiments

Seller Behavior Function

Use fθ (·, ·) to denote seller’s behavior function

fθ (v
m, xmi )︸ ︷︷ ︸

distribution of predicted decision

→ ymi︸︷︷︸
observed decision

If θ are known, we can infer vm using Bayes’ Rule:

Pr
(
vm = v| {(xmi , ymi )}i∈I ,θ

)
=

Prprior (vm = v)Pr
(
{ymi }i∈I |vm = v, {xmi }i∈I ,θ

)∑
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It is not a standard supervised learning problem.
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We can then derive a feasible interval of vm from observed data.
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Feasible Interval of Valuation vm

Assumption: seller never chooses strictly dominated decisions.

We can then derive a feasible interval of vm from observed data.

vm ≤ 90 vm ≤ 75vm > 50
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Learning of θ

We learn θ by minimizing following loss function on data:∑
m∈M

∑
i∈I

CrossEntropy
(
fθ
(
vmsample, x

m
i

)
, ymi

)
−
∑
m∈M

log Pr
(
vm ∈ Vmfeasible| {(xmi , ymi )}i∈I ,θ

)
(i) minimize distance between predicted and observed decisions

(ii) maximize probability that inferred vm lies in feasible interval

A�er learning θ, we infer {vm}m∈M.
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Extension: Heterogeneous fθk

Homogeneous behavior function: fθ

Heterogeneous behavior function: fθ1 , . . . , fθK
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Extension: Heterogeneous fθk

Homogeneous behavior function: fθ

Heterogeneous behavior function: fθ1 , . . . , fθK

Cluster 2

Cluster 1

Clustering Phase

partition sellers into K clusters

Learning Phase

learn behavior functions separately

iterate

Cluster 3

Cluster 2

Cluster 1

Cluster 3
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Experiments
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Experimental Se�ings

Comparison methods
Our method (homo./hetero.)

Single learning (homo./hetero.)

Dual learning (homo./hetero.)

Datasets
Synthetic dataset: 900 sellers, 120,000 bargaining threads

We use di�erent theoretical models to simulate human behaviors.
Ground truth (i.e., vm) is known.

Real dataset: 30,000+ sellers, 300,000+ bargaining threads
Ground truth (i.e., vm) is not known.
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Results

Synthetic validation data (10% of all synthetic data)
The randomly generated vm belongs to {10, 14, . . . , 94, 98}.

MSEs of Inferred vm Under Di�erent Schemes (Averaged Over Six Runs).
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Results

Real testing data (10% of all real data)
Ratio: fraction of inferred vm satisfying secrete bounds.

Ratios Under Di�erent Schemes (Averaged Over Six Runs).
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Conclusion

We propose a private valuation inference method based on ML.

Challenge: valuation is not observable.
Novelty: define feasible interval, and include it in a new loss
function to guide learning.
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Publication

Lvye Cui and Haoran Yu, “Inferring Private Valuations from
Behavioral Data in Bilateral Sequential Bargaining,”
International Joint Conference on Artificial Intelligence (IJCAI),
Macao, China, August 2023.
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