Inferring Private Valuations from Behavioral Data in Bilateral Sequential Bargaining

Lvye Cui and Haoran Yu

School of Computer Science & Technology Beijing Institute of Technology

May 2023

Problem

Experiments

Background

Background ○●○	Problem 00000000	Solution 00000000000	Experiments
Bilateral Barga	ining		

- One seller and one buyer negotiate the price of an item.
- E-commerce platforms: eBay, Xianyu.

Background	Рковlem	Solution	Experiments
○●○	00000000		0000000
Bilateral Barga	ining		

- One seller and one buyer negotiate the price of an item.
- E-commerce platforms: eBay, Xianyu.

There are over 90 million such listings on eBay during 2012~2013.

Background	Problem 00000000	Solution	Experiments
00●		00000000000	0000000
Inferring Priva	te Valuations in	Bargaining	

- Question: How to infer sellers' and buyers' private valuations on items from their bargaining behaviors?
- This work focuses on inferring sellers' private valuations.

Background	Problem 00000000	Solution	Experiments
00●		00000000000	0000000
Inferring Priva	te Valuations in	Bargaining	

- Question: How to infer sellers' and buyers' private valuations on items from their bargaining behaviors?
- This work focuses on inferring sellers' private valuations.

BACKGRO	DUND
000	

Problem ●0000000

Experiments

Problem

Inferring P	rivate Valuatio	ns in Bargaining	
	0000000		
BACKGROUND	PROBLEM	SOLUTION	Experiments

• Seller's private valuation: lowest price that seller will accept

Inferring Private V	aluations in	Bargaining	
BACKGROUND PROBLE		Solution 0000000000	Experiments 0000000

• Seller's private valuation: lowest price that seller will accept

Inferring Priva	te Valuations in	Bargaining	
Background	Problem	Solution	Experiments
000	00●00000	00000000000	0000000

• Seller's private valuation: lowest price that seller will accept

• What is the seller's valuation for the bicycle? Lie in (50, 75]?

• Given more data about this seller (possibly on other items), we may learn his bargaining strategy and infer a more accurate valuation.

Inferring P	rivate Valuation	ns in Bargaining	
Background	Problem 00●00000	Solution 0000000000	Experiments

• Seller's private valuation: lowest price that seller will accept

- What is the seller's valuation for the bicycle? Lie in (50, 75]?
 - Given more data about this seller (possibly on other items), we may learn his bargaining strategy and infer a more accurate valuation.

BACKGROUND	Рковlем	Solution	Experiments
000	000 0 000	0000000000	0000000
Problem Desci	ription		

• We first focus on one seller who sells multiple items.

Denote observable data as {(x^m_i, y^m_i)}_{i∈I.m∈M}

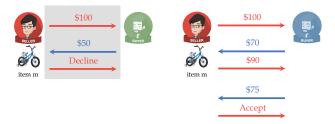
- **x**_i^m: history of the bargaining (between the seller and a buyer)
- y_i^m : seller decision (i.e., accept, decline, or a counter-offer)
- *m*: item index
- i: data point index

Problem D	escription		
Background	Рковlем	Solution	Experiments
000	000●0000	0000000000	0000000

- We first focus on one seller who sells multiple items.
- Denote observable data as $\{(\boldsymbol{x}_i^m, y_i^m)\}_{i \in \mathcal{I}, m \in \mathcal{M}}$
 - \mathbf{x}_i^m : history of the bargaining (between the seller and a buyer)
 - *y_i^m*: seller decision (i.e., accept, decline, or a counter-offer)
 - *m*: item index
 - *i*: data point index

Background	PROBLEM	Solution	Experiments
Problem D	Description		

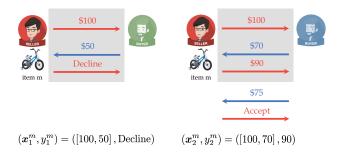
- Denote observable data as $\{(\mathbf{x}_i^m, y_i^m)\}_{i \in \mathcal{I}, m \in \mathcal{M}}$
 - \mathbf{x}_i^m : history of the bargaining (between the seller and a buyer)
 - y_i^m: seller decision (i.e., accept, decline, or a counter-offer)
 - *m*: item index
 - i: data point index



 $(\pmb{x}_1^m, y_1^m) = \left(\left[100, 50 \right], \text{Decline} \right)$

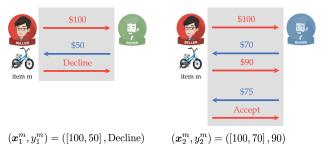
Problem D			000000
Background	PROBLEM	Solution	Experiments

- Denote observable data as $\{(\mathbf{x}_i^m, y_i^m)\}_{i \in \mathcal{I}, m \in \mathcal{M}}$
 - \mathbf{x}_i^m : history of the bargaining (between the seller and a buyer)
 - y_i^m: seller decision (i.e., accept, decline, or a counter-offer)
 - *m*: item index
 - *i*: data point index



Background	Рговlем	Solution	Experiments
000	000000●0	0000000000	0000000
Problem D	escription		

- Denote observable data as $\{(\mathbf{x}_i^m, y_i^m)\}_{i \in \mathcal{I}, m \in \mathcal{M}}$
 - \mathbf{x}_i^m : history of the bargaining (between the seller and a buyer)
 - *y_i^m*: seller decision (i.e., accept, decline, or a counter-offer)
 - *m*: item index
 - i: data point index



 $(\boldsymbol{x}_{3}^{m}, y_{3}^{m}) = \left(\left[100, 70, 90, 75 \right], \text{Accept} \right)$

Background	Problem	Solution	Experiments
000	0000000●	0000000000	0000000
Problem D	Description		

- Denote observable data as $\{(\mathbf{x}_i^m, y_i^m)\}_{i \in \mathcal{I}, m \in \mathcal{M}}$
 - \mathbf{x}_i^m : history of the bargaining (between the seller and a buyer)
 - y_i^m : seller decision (i.e., accept, decline, or a counter-offer)
 - *m*: item index
 - *i*: data point index
- Denote seller's valuation for item m as v^m (unobservable).

Private Valuation Inference Problem

Given $\{(\mathbf{x}_i^m, \mathbf{y}_i^m)\}_{i \in \mathcal{I}, m \in \mathcal{M}}$, how to infer $\{\mathbf{v}^m\}_{m \in \mathcal{M}}$?

BACKGROUND	Problem	SOLUTION	Experiments
		•000000000	

Solution

distribution of predicted decision observed decision

• If θ are known, we can infer v^m using Bayes' Rule:

$$\Pr\left(v^{m} = v | \{(\mathbf{x}_{i}^{m}, y_{i}^{m})\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)$$

=
$$\frac{\Pr_{\text{prior}}\left(v^{m} = v\right) \Pr\left(\{y_{i}^{m}\}_{i \in \mathcal{I}} | v^{m} = v, \{\mathbf{x}_{i}^{m}\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)}{\sum_{\tilde{v}} \Pr_{\text{prior}}\left(v^{m} = \tilde{v}\right) \Pr\left(\{y_{i}^{m}\}_{i \in \mathcal{I}} | v^{m} = \tilde{v}, \{\mathbf{x}_{i}^{m}\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)}$$

• Possible solution: Assume $f_{\theta}(\cdot, \cdot)$ is an equilibrium strategy. • Weakness: Sellers have heterogeneous rationalities and beliefs.



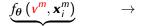
distribution of predicted decision observed decision

• If θ are known, we can infer v^m using Bayes' Rule:

$$\Pr\left(v^{m} = v | \{(\mathbf{x}_{i}^{m}, y_{i}^{m})\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)$$

=
$$\frac{\Pr_{\text{prior}}\left(v^{m} = v\right) \Pr\left(\{y_{i}^{m}\}_{i \in \mathcal{I}} | v^{m} = v, \{\mathbf{x}_{i}^{m}\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)}{\sum_{\tilde{v}} \Pr_{\text{prior}}\left(v^{m} = \tilde{v}\right) \Pr\left(\{y_{i}^{m}\}_{i \in \mathcal{I}} | v^{m} = \tilde{v}, \{\mathbf{x}_{i}^{m}\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)}$$

• Possible solution: Assume $f_{\theta}(\cdot, \cdot)$ is an equilibrium strategy. • Weakness: Sellers have heterogeneous rationalities and beliefs.



distribution of predicted decision observed decision

• If θ are known, we can infer v^m using Bayes' Rule:

$$\Pr\left(v^{m} = v | \{(\mathbf{x}_{i}^{m}, y_{i}^{m})\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)$$

=
$$\frac{\Pr_{\text{prior}}\left(v^{m} = v\right) \Pr\left(\{y_{i}^{m}\}_{i \in \mathcal{I}} | v^{m} = v, \{\mathbf{x}_{i}^{m}\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)}{\sum_{\tilde{v}} \Pr_{\text{prior}}\left(v^{m} = \tilde{v}\right) \Pr\left(\{y_{i}^{m}\}_{i \in \mathcal{I}} | v^{m} = \tilde{v}, \{\mathbf{x}_{i}^{m}\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)}$$

• Possible solution: Assume $f_{\theta}(\cdot, \cdot)$ is an equilibrium strategy. • Weakness: Sellers have heterogeneous rationalities and beliefs.

• If θ are known, we can infer v^m using Bayes' Rule:

$$\Pr\left(\mathbf{v}^{m} = \mathbf{v} | \{(\mathbf{x}_{i}^{m}, \mathbf{y}_{i}^{m})\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)$$

=
$$\frac{\Pr_{\text{prior}}\left(\mathbf{v}^{m} = \mathbf{v}\right) \Pr\left(\{\mathbf{y}_{i}^{m}\}_{i \in \mathcal{I}} | \mathbf{v}^{m} = \mathbf{v}, \{\mathbf{x}_{i}^{m}\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)}{\sum_{\tilde{\mathbf{v}}} \Pr_{\text{prior}}\left(\mathbf{v}^{m} = \tilde{\mathbf{v}}\right) \Pr\left(\{\mathbf{y}_{i}^{m}\}_{i \in \mathcal{I}} | \mathbf{v}^{m} = \tilde{\mathbf{v}}, \{\mathbf{x}_{i}^{m}\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)}.$$

• Our solution: Model $f_{\theta}(\cdot, \cdot)$ via GRU (θ are trainable weights).

 Challenge: How to train GRU on {(x_i^m, y_i^m)}_{i,m} to get θ? It is not a standard supervised learning problem.

• If θ are known, we can infer v^m using Bayes' Rule:

$$\Pr\left(\mathbf{v}^{m} = \mathbf{v} | \{(\mathbf{x}_{i}^{m}, \mathbf{y}_{i}^{m})\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)$$

=
$$\frac{\Pr_{\text{prior}}\left(\mathbf{v}^{m} = \mathbf{v}\right) \Pr\left(\{\mathbf{y}_{i}^{m}\}_{i \in \mathcal{I}} | \mathbf{v}^{m} = \mathbf{v}, \{\mathbf{x}_{i}^{m}\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)}{\sum_{\tilde{\mathbf{v}}} \Pr_{\text{prior}}\left(\mathbf{v}^{m} = \tilde{\mathbf{v}}\right) \Pr\left(\{\mathbf{y}_{i}^{m}\}_{i \in \mathcal{I}} | \mathbf{v}^{m} = \tilde{\mathbf{v}}, \{\mathbf{x}_{i}^{m}\}_{i \in \mathcal{I}}, \boldsymbol{\theta}\right)}.$$

- Our solution: Model $f_{\theta}(\cdot, \cdot)$ via GRU (θ are trainable weights).
 - Challenge: How to train GRU on {(**x**_i^m, y_i^m)}_{i,m} to get θ? It is not a standard supervised learning problem.

Background	Problem 00000000	Solution	Experiments
000		0000000000	0000000
Feasible Interv	al of Valuation	v ^m	

• Assumption: seller never chooses strictly dominated decisions.

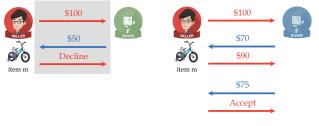
• We can then derive a feasible interval of *v*^{*m*} from observed data.

Background	Problem	Solution	Experiments
000	00000000	000●0000000	0000000
Feasible Interv	al of Valuation	<i>v^m</i>	

- Assumption: seller never chooses strictly dominated decisions.
- We can then derive a feasible interval of v^m from observed data.

Background	Problem	Solution	Experiments
000	00000000	0000000000	0000000
Feasible Interv	al of Valuation	v ^m	

- Assumption: seller never chooses strictly dominated decisions.
- We can then derive a feasible interval of v^m from observed data.

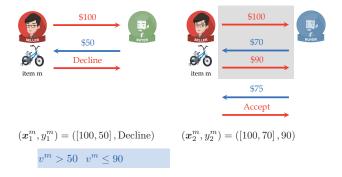


$$(\boldsymbol{x}_1^m, y_1^m) = ([100, 50], \text{Decline})$$

 $v^m > 50$

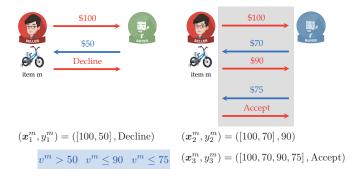
Background	Problem	Solution	Experiments
			0000000
Feasible Interv	al of Valuation	$V^{\prime\prime\prime}$	

- Assumption: seller never chooses strictly dominated decisions.
- We can then derive a feasible interval of *v^m* from observed data.



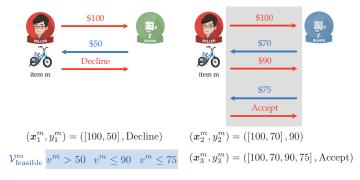
Background	Problem 00000000	Solution	Experiments
000		00000000000	0000000
Feasible Interv	al of Valuation	v ^m	

- Assumption: seller never chooses strictly dominated decisions.
- We can then derive a feasible interval of *v^m* from observed data.



Background	PROBLEM	Solution	Experiments
Feasible Interv			

- Assumption: seller never chooses strictly dominated decisions.
- We can then derive a feasible interval of *v^m* from observed data.



Background	Problem 00000000	Solution 00000000000	Experiments
Learning of θ			

$$\sum_{m \in \mathcal{M}} \sum_{i \in \mathcal{I}} \text{CrossEntropy} \left(f_{\boldsymbol{\theta}} \left(v_{\text{sample}}^{m}, \boldsymbol{x}_{i}^{m} \right), y_{i}^{m} \right) \\ - \sum_{m \in \mathcal{M}} \log \Pr \left(v^{m} \in \mathcal{V}_{\text{feasible}}^{m} | \left\{ \left(\boldsymbol{x}_{i}^{m}, y_{i}^{m} \right) \right\}_{i \in \mathcal{I}}, \boldsymbol{\theta} \right)$$

• (i) minimize distance between predicted and observed decisions

• (ii) maximize probability that inferred v^m lies in feasible interval

• After learning θ , we infer $\{v^m\}_{m \in \mathcal{M}}$.

Background	Problem 00000000	Solution 00000000000	Experiments
Learning of θ			

$$\sum_{m \in \mathcal{M}} \sum_{i \in \mathcal{I}} \text{CrossEntropy} \left(f_{\boldsymbol{\theta}} \left(v_{\text{sample}}^{m}, \boldsymbol{x}_{i}^{m} \right), y_{i}^{m} \right) \\ - \sum_{m \in \mathcal{M}} \log \Pr \left(v^{m} \in \mathcal{V}_{\text{feasible}}^{m} | \left\{ \left(\boldsymbol{x}_{i}^{m}, y_{i}^{m} \right) \right\}_{i \in \mathcal{I}}, \boldsymbol{\theta} \right)$$

• (i) minimize distance between predicted and observed decisions

• (ii) maximize probability that inferred v^m lies in feasible interval

• After learning θ , we infer $\{v^m\}_{m \in \mathcal{M}}$.

Background	Problem 00000000	Solution 000000000000	Experiments
Learning of θ			

$$\sum_{m \in \mathcal{M}} \sum_{i \in \mathcal{I}} \text{CrossEntropy} \left(f_{\boldsymbol{\theta}} \left(\boldsymbol{v}_{\text{sample}}^{m}, \boldsymbol{x}_{i}^{m} \right), \boldsymbol{y}_{i}^{m} \right) \\ - \sum_{m \in \mathcal{M}} \log \Pr \left(\boldsymbol{v}^{m} \in \mathcal{V}_{\text{feasible}}^{m} | \left\{ \left(\boldsymbol{x}_{i}^{m}, \boldsymbol{y}_{i}^{m} \right) \right\}_{i \in \mathcal{I}}, \boldsymbol{\theta} \right)$$

- (i) minimize distance between predicted and observed decisions
- (ii) maximize probability that inferred v^m lies in feasible interval

• After learning θ , we infer $\{v^m\}_{m \in \mathcal{M}}$.

Background	Problem 00000000	Solution 000000000000	Experiments
Learning of θ			

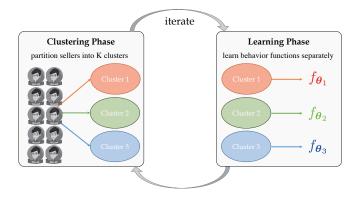
$$\sum_{m \in \mathcal{M}} \sum_{i \in \mathcal{I}} \text{CrossEntropy} \left(f_{\boldsymbol{\theta}} \left(v_{\text{sample}}^{m}, \boldsymbol{x}_{i}^{m} \right), y_{i}^{m} \right) \\ - \sum_{m \in \mathcal{M}} \log \Pr \left(v^{m} \in \mathcal{V}_{\text{feasible}}^{m} | \left\{ \left(\boldsymbol{x}_{i}^{m}, y_{i}^{m} \right) \right\}_{i \in \mathcal{I}}, \boldsymbol{\theta} \right)$$

- (i) minimize distance between predicted and observed decisions
- (ii) maximize probability that inferred v^m lies in feasible interval
- After learning θ , we infer $\{v^m\}_{m \in \mathcal{M}}$.

Background 000	Problem 00000000	Solution 00000000000	Experiments
Extension: Het	erogeneous f_{θ_k}		

- Homogeneous behavior function: f_{θ}
- Heterogeneous behavior function: $f_{\theta_1}, \ldots, f_{\theta_K}$

- Homogeneous behavior function: f_{θ}
- Heterogeneous behavior function: $f_{\theta_1}, \ldots, f_{\theta_K}$



Experiments

BACKGROUND	

Problem 00000000 Experiments 000000

Experimental Settings

Comparison methods

- Our method (homo./hetero.)
- Single learning (homo./hetero.)
- Dual learning (homo./hetero.)
- Datasets
 - Synthetic dataset: 900 sellers, 120,000 bargaining threads
 - We use different theoretical models to simulate human behaviors.
 - Ground truth (i.e., v^m) is known.
 - Real dataset: 30,000+ sellers, 300,000+ bargaining threads
 - Ground truth (i.e., v^m) is not known.

Васка	ROL	JN	D
000			

Problem 00000000 Experiments

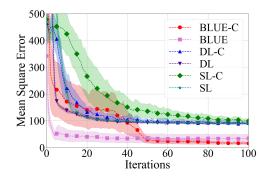
Experimental Settings

Comparison methods

- Our method (homo./hetero.)
- Single learning (homo./hetero.)
- Dual learning (homo./hetero.)
- Datasets
 - Synthetic dataset: 900 sellers, 120,000 bargaining threads
 - We use different theoretical models to simulate human behaviors.
 - Ground truth (i.e., v^m) is known.
 - Real dataset: 30,000+ sellers, 300,000+ bargaining threads
 - Ground truth (i.e., v^m) is not known.

Background	Problem	Solution	Experiments
Results			

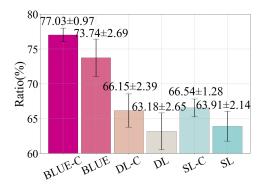
- Synthetic validation data (10% of all synthetic data)
 - The randomly generated v^m belongs to $\{10, 14, \ldots, 94, 98\}$.



MSEs of Inferred v^m Under Different Schemes (Averaged Over Six Runs).

Background	Problem	SOLUTION	Experiments
000	0000000	0000000000	0000000
Results			

- Real testing data (10% of all real data)
 - Ratio: fraction of inferred v^m satisfying secrete bounds.



Ratios Under Different Schemes (Averaged Over Six Runs).

Conclusion

- We propose a private valuation inference method based on ML.
 - Challenge: valuation is not observable.
 - Novelty: define feasible interval, and include it in a new loss function to guide learning.

BACKGROUND

Problem

Solution 000000000000 EXPERIMENTS

Publication

 Lvye Cui and Haoran Yu, "Inferring Private Valuations from Behavioral Data in Bilateral Sequential Bargaining," International Joint Conference on Artificial Intelligence (IJCAI), Macao, China, August 2023. **Problem**

Solution 00000000000 Experiments

