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Background

Bilateral Sequential Bargaining:

• One seller and one buyer negotiate the price of an item. It exists
many e-commerce platforms: Amazon, eBay, and Taobao.

• Quantifying the optimality of bargaining mechanism needs to first
know bargainers’ private valuations on items, which is unobserved.

Our Goal: Infer bargainers’ private valuations from their behaviors.

• We focus on seller private valuation inference.

• Existing equilibrium-based inference schemes rely on stong rational-
ity assumptions, which are unsatisfied in real bargaining platforms.

Problem Formulation
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– i: the index of a data point
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• Denote seller q’s valuation on item m as v
(m)
q (unobservable).

Private Valuation Inference Problem

Given each observable dataset
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of seller q on

item m, how to infer each v
(m)
q for seller q on item m?

Private Valuation Inference Solution

• Denote seller q’s bargaining behavior utilizing function f
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θ :
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If parameters θ are known, we can infer each v
(m)
q by Bayes’ Rule:
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Our Solution: Model f
(q)
θ via GRU network (θ are trainable weights):

1. Minor rationality assumption: we assume that a seller never chooses

strictly dominated decisions, deriving a feasible interval for v
(m)
q .

2. Learning of parameters θ: A novel loss function that is based on
derived feasible intervals is proposed to guide GRU training.

Feasible Interval of Valuation

Assumption 1 In the bargaining: (i) if a seller accepts a buyer’s offer,
the seller’s valuation is no greater than the price; (ii) if a seller declines
the buyer’s offer in the last round, the seller’s valuation is no less than
the price; (iii) a seller never proposes a price less than his valuation.

• Feasible interval is defined as the set of all possible valuation values
satisfying above Assumption 1.
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the feasible interval V(q)
m of v

(q)
m is [50, 75].

• This assumption is much weaker than equilibrium ones. It only
requires that players do not choose strictly dominated strategies.

Learning of Parameters θ

• Homogeneous behavior learning (BLUE): assume f
(q)
θ =fθ for all q.

We learn θ by minimizing a novel loss function on data:∑
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1. minimize distance between predicted and observed decisions
2. maximize probability that inferred v

(q)
m lies infeasible interval

• Heterogeneous behavior learning (BLUE-C), i.e., f
(q)
θ ̸= f

(k)
θ exists.

Experiments & Results

Inference Performance on Synthetic and Real Datasets:

- Synthetic data: MSE between inferred valuation and actual value

- Real data: the percentage of inferred valuations belonging to the
feasible intervals (RCIR)

Comparable performance to other methods on validation datasets.

Best inference performance among all methods on testing datasets.

More results on other experiments can be found in our paper.


