INFERRING PRIVATE VALUATIONS FROM BEHAVIORAL DATA

IN BILATERAL SEQUENTIAL BARGAINING

Lvye Cui Haoran Yu*
cul_lvyeQoutlook.com, yhrhawk@gmail.com

School of Computer Science & Technology, Beijing Institute of Technology

BACKGROUND
Bilateral Sequential Bargaining:
e One seller and one buyer negotiate the price of an item. It exists
many e-commerce platforms: Amazon, eBay, and Taobao.
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e (Quantitying the optimality of bargaining mechanism needs to first
know bargainers’ private valuations on items, which is unobserved.

Our Goal: Infer bargainers’ private valuations from their behaviors.

e We focus on seller private valuation inference.

e Existing equilibrium-based inference schemes rely on stong rational-
ity assumptions, which are unsatisfied in real bargaining platforms.

PROBLEM FORMULATION

e For item m of seller ¢, denote observed data as {(m§qm), yfqm))} .
i

— ¢: the index of a data point

y,gqm): seller ¢’s decision, 1.e., accept, decline, or a counter-offer
— mgqm): offer history in the bargaining between seller ¢ and a buyer
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e Denote seller ¢’s valuation on item m as vy ) (unobservable).

Given each observable dataset {( Eqm), y§qm))} . of seller ¢ on
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item m, how to infer each vy ) for seller g on item m?

PRIVATE VALUATION INFERENCE SOLUTION

e Denote seller ¢’s bargaining behavior utilizing function f, (a).
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If parameters 6 are known, we can infer each v(gm) by Bayes’ Rule:
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Our Solution: Model f, {9 via GRU network (@ are trainable weights):

1. Minor rationality assumption: we assume that a seller never chooses

strictly dominated decisions, deriving a feasible interval for v(gm).

2. Learning of parameters @: A novel loss function that is based on
derived feasible intervals is proposed to guide GRU training.

FEASIBLE INTERVAL OF VALUATION

Assumption 1 In the bargaining: (i) if a seller accepts a buyer’s offer,
the seller’s valuation is no greater than the price; (i) if a seller declines
the buyer’s offer in the last round, the seller’s valuation is no less than
the price; (ii1) a seller never proposes a price less than his valuation.

e Feasible interval is defined as the set of all possible valuation values
satisfying above Assumption 1.
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e This assumption is much weaker than equilibrium ones. It only
requires that players do not choose strictly dominated strategies.

_d

IJCAI/2023 MACAO

LLEARNING OF PARAMETERS 6

e Homogeneous behavior learning (BLUE): assume éq) = fg for all q.
We learn 6 by minimizing a novel loss function on data:
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1. minimize distance between predicted and observed decisions
2. maximize probability that inferred vfn) lies infeasible interval
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e Heterogeneous behavior learning (BLUE-C), i
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EXPERIMENTS & RESULTS

Inference Performance on Synthetic and Real Datasets:

- Synthetic data: MSE between inferred valuation and actual value

- Real data: the percentage of inferred valuations belonging to the
feasible intervals (RCIR)
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Comparable performance to other methods on validation datasets.
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Best inference performance among all methods on testing datasets.

More results on other experiments can be found in our paper.



