Market Your Venue with Mobile Applications

Haoran Yu¹, George Iosifidis², Biying Shou³, and Jianwei Huang⁴

¹Department of Electrical Engineering and Computer Science, Northwestern University ²School of Computer Science and Statistics, Trinity College Dublin, the University of Dublin ³Department of Management Sciences, City University of Hong Kong ⁴Department of Information Engineering, The Chinese University of Hong Kong

Mobile Apps with Augmented Reality Features

Other examples include Red Envelope Game, Snapchat's Geo-filter, Yinyangshi, etc.

- (i) Apps label real-world locations as places of interest (POIs).
- (ii) After physically visiting the locations, users can win items (e.g., Pokemons and coupons) in the apps.

Apps Benefit Venues

If venues (e.g., restaurants) are labeled as *POls*, they can attract more visitors, which potentially increases the venues' sales.

Venues Benefit Apps

If users play the apps at venues with good infrastructure (e.g., charging stations and Wi-Fi networks), they will have enhanced app experience.

free smartphone charging stations

@Sprint

free Wi-Fi networks

@Starbucks

POI-Based Collaborations of Apps and Venues

- Practical examples
 - ▶ Pokemon Go collaborated with 3,000 McDonald's restaurants in Japan, and 10,500 Sprint stores and 12,800 Starbucks locations in the U.S.;
 - ► Yinyangshi collaborated with 5,000 KFC and 1,700 Pizza Hut in China;
 - ► Snapchat offered specialized "geo-filters" for Wendy's in the U.S.;
 - ► Snatch labeled locations of Mitchells & Butlers and Topshop in the U.K. as "safehouses".
- AR/VR market's worldwide revenue might exceed \$162 billion in 2020, so POI-based collaboration could create substantial revenues.

Illustration of POI-Based Collaboration

Consider an app and a store/restaurant chain's representative venue.

- After becoming a POI, venue's investment in the app-related infrastructure affects the number of visitors.
- Misaligned interests
 - ► App: benefits from both green & purple users (as they interact with POI).
 - Venue: gains profits only from green users (with interests in its products).
 - ▶ Restrict venue's willingness to invest and also the created revenue.

Problem Description

- Current practices of app's tariffs
 - ► Lump-sum-only tariff: based on a lump-sum fee
 - * Example: Snapchat.
 - ▶ Per-player-only tariff: based on number of users interacting with POIs
 - ★ Example: Pokemon Go charges a venue \$0.5 per player.
- Question: Can these tariffs solve the "misaligned interests" problem?
 Our answer: No. We design an optimal two-part tariff, which incentivizes the highest venue's investment and creates the highest revenue compared with the two state-of-the-art tariffs.

Related Work

- Cooperation between online and offline businesses
 - ▶ There are very few papers in this area.
 - ▶ POI-based collaboration: there are only empirical studies ([V. Pamuru et al. 2017], [A. Colley et al. 2017]), and we provide first analytical study.
- Competition between online and offline businesses
 - ► Empirical study on users' choices between online & offline businesses
 - * [A. Goolsbee 2000], [JT. Prince 2007], [C. Forman et al. 2009]
 - Analytical study on price competition between online & offline businesses
 - ★ [S. Balasubramanian 1998], [X. Pan et al. 2002], [S. Viswanathan 2005]
 - ▶ The studied online & offline businesses sell the same type of products.

App's Two-Part Tariff (I, p)

- We assume that the app is free to all users.
- The app announces a two-part tariff (I, p) to venue:
 - ▶ $I \in \mathbb{R}$: lump-sum fee, $p \in \mathbb{R}$: per-player charge.
 - When the venue becomes a POI, it pays:
 - $I + p \times$ number of users interacting with the POI.
 - ▶ Note that the app can incentivize the venue with negative *I*, *p*.

Venue's POI Decision *r* and **Investment Decision** *l*

- Venue's choices
 - ▶ POI decision $r \in \{0,1\}$: r = 1 if and only if it becomes a POI;
 - ▶ Investment level $I \ge 0$ on the app-related infrastructure.
- We use parameter I_0 to denote the initial investment level, and call $I + I_0$ as the total investment level.

A Type- (ω, c) User's Decision d

We consider a continuum of users who use the app, and denote the population size by N. Each user is described by two attributes:

- $\omega \in \{0,1\}$ captures a user's intrinsic interest in venue's products.
 - We assume that ηN users have $\omega = 1$, and $(1 \eta) N$ users have $\omega = 0$.
- $c \in [0, c_{max}]$ captures a user's transportation cost to visit the venue.
 - We assume that c uniformly takes a value from $[0, c_{max}]$.

A Type- (ω, c) User's Decision d

- Denote a user's decision by $d \in \{0, 1, 2\}$:
 - ightharpoonup d = 0: do not visit the venue;
 - ightharpoonup d = 1: visit the venue but do not interact with the POI;
 - ightharpoonup d = 2: visit the venue and interact with the POI.
- A type- (ω, c) user's payoff under the venue's choices r and I is

$$\Pi^{\text{user}}(\omega, c, d, r, I) = \begin{cases}
0, & \text{if } d = 0, \\
U\omega - c, & \text{if } d = 1, \\
U\omega - c + V + \theta \bar{y}(r, I) N - \frac{\delta}{I + I_0} \bar{y}(r, I) N, & \text{if } d = 2.
\end{cases}$$

- lacksquare U>0: utility of a user with $\omega=1$ when it consumes venue's products;
- ightharpoonup V > 0: a user's base utility of interacting with the POI;
- ▶ $\theta \ge 0$: network effect factor;
- ▶ $\bar{y}(r, I) \in [0, 1]$: the fraction of users interacting with the POI, given the venue's choices r and I (depend on all users' equilibrium decisions);
- $\delta > 0$: congestion effect factor.

Three-Stage Game

Stage I

The app announces $(I, p) \in \mathbb{R} \times \mathbb{R}$.

Stage II

The venue chooses $r \in \{0,1\}$ and $l \ge 0$.

Stage III

Each type- (ω, c) user decides $d \in \{0, 1, 2\}$.

Users' Equilibrium at Stage III

A type- (ω, c) user decides d^* by solving

$$\max \Pi^{\mathrm{user}}\left(\omega,c,d,r,I
ight) \ \mathrm{var.} \ d \in \left\{ egin{array}{ll} \left\{0,1
ight\}, & \mathrm{if} \ r=0, \\ \left\{0,1,2
ight\}, & \mathrm{if} \ r=1. \end{array}
ight.$$

Users' Equilibrium at Stage III

Under venue's POI and investment decisions, we have three possible cases.

Venue's Equilibrium Decisions at Stage II

The venue makes the POI choice r^* and investment choice I^* by solving

$$\max \Pi^{\text{venue}}\left(r, I, I, p\right) \triangleq \underbrace{bN\bar{x}\left(r, I\right)}_{\text{profit from sales}} - \underbrace{kI}_{\text{investment cost}} - \underbrace{r\left(I + pN\bar{y}\left(r, I\right)\right)}_{\text{payment}}$$

var. $r \in \{0, 1\}, l \ge 0$.

- b > 0: the venue's profit due to one user's consumption of products;
- $\bar{x}(r, I) \in [0, 1]$: fraction of users that have $\omega = 1$ and visit the venue under r and I (depend on users' equilibrium decisions at Stage III);
- k > 0: unit investment cost.

Venue's Equilibrium Decisions at Stage II

Based on initial investment level I_0 and congestion effect factor δ , we have three situations:

- Small I_0 and large δ (only illustrate this situation below);
- Small I_0 and small δ ;
- Large δ .

(We analytically characterize all boundaries in the paper.)

App's Optimal Tariff at Stage I

The app determines (I^*, p^*) by solving

$$\max R^{\text{app}}\left(I,p\right) \triangleq \underbrace{r^{*}\left(I,p\right)\left(I+pN\bar{y}\left(r^{*}\left(I,p\right),I^{*}\left(I,p\right)\right)\right)}_{\text{venue's payment}} + \underbrace{\phi N\bar{y}\left(r^{*}\left(I,p\right),I^{*}\left(I,p\right)\right)}_{\text{advertising revenue}}$$

var. $I, p \in \mathbb{R}$.

Here, $\phi \ge 0$ is the unit advertising revenue, representing the app's advertising revenue because of a user's interaction with the POI.

App's Optimal Tariff at Stage I

App's optimal two-part tariff

- (i) Per-player charge $p^* = -\phi \le 0$ (ϕ is app's unit ad revenue);
- (ii) Lump-sum fee $l^* > 0$ is the maximum lump-sum fee under which venue becomes a POI, given $p^* = -\phi$ (concrete expression is given in our paper).
 - Reason
 - ▶ When $p^* = -\phi$, the venue's investment level in response to p^* will maximize the summation of the app's revenue and venue's payoff;
 - ▶ App chooses *I** to extract all the venue's surplus.
 - Practical insight: charge-with-subsidy scheme
 - ▶ In order to be a POI, the venue needs to first pay I*;
 - Every time a user interacts with the POI, the app pays the venue ϕ .

Comparison with State-of-The-Art Schemes

- Our tariff always achieves the highest app's total revenue.
 - ▶ Can prove it is true even compared with a general class of tariffs.
- Our tariff always achieves the highest app's ad revenue.
 - ▶ This implies highest investment and highest number of interactions.

Comparison with State-of-The-Art Schemes

Comparison with lump-sum-only tariff

- Our tariff's performance improvement is most obvious at medium δ .
- Our tariff's strength: subsidize the venue to incentivize investment, which relieves the congestion.

Comparison with State-of-The-Art Schemes

Comparison with per-player-only tariff

- Our tariff's performance improvement is most obvious at large θ .
- Our tariff's strength: extract high venue's payment via lump-sum fee.

Conclusion and Future Direction

Conclusion

- ▶ Model the emerging POI-based collaboration by a three-stage game.
- ▶ Design an optimal two-part tariff to realize its full business potential.

Our other results

- ▶ Survey venues' influences on 103 Pokemon Go players' experience.
- Study implementation of optimal two-part tariff under uncertainty.
- ► Analyze which type of venues is the best choice to collaborate.
 - * Counter-intuitive insights, e.g., a bandwidth-consuming app should collaborate with a low-quality venue, rather than a high-quality venue.

Future direction

- Consider heterogeneity of users' sensitivities to the network effect and congestion effect.
- ▶ Investigate the competition among multiple venues in becoming POIs.

THANK YOU

