A Business Model Analysis of Mobile Data Rewards

Haoran Yu, Ermin Wei, and Randall A. Berry

Department of Electrical and Computer Engineering Northwestern University

May 2019 @INFOCOM

•0000000

I. Background

• Explain what are mobile data rewards.

Mobile Data Rewards

- Conventionally, users pay subscription fees to the network operators to gain mobile data.
 - e.g., Orange Mobile: €17/month for a 5GB monthly plan.
- Recently, some network operators offer mobile data rewards:

Mobile Data Rewards

Background

- Conventionally, users pay subscription fees to the network operators to gain mobile data.
 - e.g., Orange Mobile: €17/month for a 5GB monthly plan.
- Recently, some network operators offer mobile data rewards: users can complete certain tasks (e.g., watch ads, take surveys, and download apps) to earn free mobile data.

Example of Ad-Sponsored Data Rewards

Steps to gain data rewards:

Download the dedicated app

Background

00000000

Select tasks

Watch ads to

Gain mobile data from (e.g., watching ads) accumulate "credits" operator based on "credits"

Example of Ad-Sponsored Data Rewards

Rewarding users for watching ads can improve ad effectiveness.

Example of Ad-Sponsored Data Rewards

Rewarding users for watching ads can improve ad effectiveness.

Effectiveness of Alpro Yoghurt's ad (displayed on the app shown in the last slide)

0000000

Win-Win-Win Outcome

Data rewards lead to a win-win-win outcome for network operators, users, and advertisers.

Key Results

Key Market Players

Operators implementing data rewards

00000000

Operators implementing data rewards

0000000

Operators implementing data rewards Companies providing technical support (e.g., connecting with advertisers)

- Key Question: Who are eligible to receive data rewards?
 - Scheme 1: Only the data plan's subscribers.
 - ullet Incentivize more subscriptions o more subscription revenue.

- Key Question: Who are eligible to receive data rewards?
 - Scheme 1: Only the data plan's subscribers.
 - Incentivize more subscriptions \rightarrow more subscription revenue.

Network Operator

- Key Question: Who are eligible to receive data rewards?
 - Scheme 1: Only the data plan's subscribers.
 - Incentivize more subscriptions → more subscription revenue.
 - Scheme 2: Both subscribers and non-subscribers.
 - More people watch ads \rightarrow more ad revenue.

Network Operator

- Key Question: Who are eligible to receive data rewards?
 - Scheme 1: Only the data plan's subscribers.
 - Incentivize more subscriptions → more subscription revenue.
 - Scheme 2: Both subscribers and non-subscribers.
 - More people watch ads \rightarrow more ad revenue.

Network Operator

• Mobile data rewards: [Bangera et al. 2017] and [Sen et al. 2017] conducted surveys and experiments to evaluate the

effectiveness of rewarding users for watching ads.

• Our work conducts the first analytical analysis of ecosystem.

III. Model

• Model the strategies and payoffs of the users, advertisers, and network operator.

- We consider a continuum of users, with a total mass of N.
- Each user's type θ captures its valuation for mobile service.
- Each user decides:
 - $r \in \{0,1\}$: whether to subscribe to (monthly) data plan.
 - $x \ge 0$: total numbers of ads to watch per month.
- A type- θ user's payoff is

$$\Pi^{\text{user}}(\theta, r, x, \omega) = \underbrace{\theta u \left(\underbrace{Qr + \omega x}_{\text{total data}}\right) - \underbrace{Fr}_{\text{payment}} - \underbrace{\Phi x}_{\text{ads disutility}}$$

Key Results

Model: Heterogeneous Users

- We consider a continuum of users, with a total mass of N.
- Each user's type θ captures its valuation for mobile service. $\theta \in [0, \theta_{\text{max}}]$ follows a general distribution with PDF $g(\cdot)$.
- Each user decides:
 - $r \in \{0,1\}$: whether to subscribe to (monthly) data plan.
 - $x \ge 0$: total numbers of ads to watch per month.
- A type- θ user's payoff is

$$\Pi^{\text{user}}(\theta, \mathbf{r}, \mathbf{x}, \omega) = \underbrace{\theta u \left(\underbrace{Q\mathbf{r} + \omega \mathbf{x}}_{\text{total data}}\right) - \underbrace{F\mathbf{r}}_{\text{payment}} - \underbrace{\Phi \mathbf{x}}_{\text{ads disutility}}$$

- We consider a continuum of users, with a total mass of N.
- Each user's type θ captures its valuation for mobile service. $\theta \in [0, \theta_{\text{max}}]$ follows a general distribution with PDF $g(\cdot)$.
- Each user decides:
 - $r \in \{0,1\}$: whether to subscribe to (monthly) data plan.
 - $x \ge 0$: total numbers of ads to watch per month.
- A type- θ user's payoff is

$$\Pi^{\text{user}}(\theta, r, x, \omega) = \underbrace{\theta u \left(\underbrace{Qr + \omega x}_{\text{total data}}\right) - \underbrace{Fr}_{\text{payment}} - \underbrace{\Phi x}_{\text{ads disutility}}$$

- We consider a continuum of users, with a total mass of N.
- Each user's type θ captures its valuation for mobile service. $\theta \in [0, \theta_{\text{max}}]$ follows a general distribution with PDF $g(\cdot)$.
- Each user decides:

Background

- $r \in \{0,1\}$: whether to subscribe to (monthly) data plan.
- $x \ge 0$: total numbers of ads to watch per month.
- A type- θ user's payoff is

$$\Pi^{\text{user}}(\theta, \mathbf{r}, \mathbf{x}, \omega) = \underbrace{\theta u \left(\underbrace{Q\mathbf{r} + \omega \mathbf{x}}_{\text{total data}}\right) - \underbrace{F\mathbf{r}}_{\text{payment}} - \underbrace{\Phi \mathbf{x}}_{\text{ads disutility}}$$

- We consider a continuum of users, with a total mass of N.
- Each user's type θ captures its valuation for mobile service. $\theta \in [0, \theta_{\text{max}}]$ follows a general distribution with PDF $g(\cdot)$.
- Each user decides:

Background

- $r \in \{0,1\}$: whether to subscribe to (monthly) data plan.
- $x \ge 0$: total numbers of ads to watch per month.
- A type- θ user's payoff is

$$\Pi^{\text{user}}(\theta, \mathbf{r}, \mathbf{x}, \omega) = \underbrace{\theta u \left(\underbrace{Q\mathbf{r} + \omega \mathbf{x}}_{\text{total data}}\right) - \underbrace{F\mathbf{r}}_{\text{payment}} - \underbrace{\Phi \mathbf{x}}_{\text{ads disutility}}$$

- We consider a continuum of users, with a total mass of N.
- Each user's type θ captures its valuation for wireless service. $\theta \in [0, \theta_{\text{max}}]$ follows a general distribution with PDF $h(\cdot)$.
- Each user decides:
 - $r \in \{0,1\}$: whether to subscribe to (monthly) data plan.
 - $x \ge 0$: total numbers of ads to watch per month.
- A type- θ user's payoff is

$$\Pi^{\text{user}}\left(\theta, \mathbf{r}, \mathbf{x}, \omega\right) = \underbrace{\theta u \left(\underbrace{Q\mathbf{r} + \omega \mathbf{x}}_{\text{total data}}\right) - \underbrace{F\mathbf{r}}_{\text{payment}} - \underbrace{\Phi \mathbf{x}}_{\text{ads disutility}}$$
utility

- Q > 0: data amount associated with subscription.
- F > 0: data plan subscription fee.
- $\omega \ge 0$: amount of data rewarded for watching one ad (ω will be optimized by operator).
- $\Phi > 0$: disutility of watching one ad.

- We consider a continuum of users, with a total mass of N.
- Each user's type θ captures its valuation for wireless service. $\theta \in [0, \theta_{\text{max}}]$ follows a general distribution with PDF $h(\cdot)$.
- Each user decides:
 - $r \in \{0,1\}$: whether to subscribe to (monthly) data plan.
 - $x \ge 0$: total numbers of ads to watch per month.
- A type- θ user's payoff is

$$\Pi^{\text{user}}\left(\theta, \mathbf{r}, \mathbf{x}, \omega\right) = \underbrace{\theta u \left(\underbrace{Q\mathbf{r} + \omega \mathbf{x}}_{\text{total data}}\right) - \underbrace{F\mathbf{r}}_{\text{payment}} - \underbrace{\Phi \mathbf{x}}_{\text{ads disutility}}$$
utility

- Q > 0: data amount associated with subscription.
- F > 0: data plan subscription fee.
- $\omega \ge 0$: amount of data rewarded for watching one ad (ω will be optimized by operator).
- $\Phi > 0$: disutility of watching one ad.

- We consider a continuum of users, with a total mass of N.
- Each user's type θ captures its valuation for wireless service. $\theta \in [0, \theta_{\text{max}}]$ follows a general distribution with PDF $h(\cdot)$.
- Each user decides:
 - $r \in \{0,1\}$: whether to subscribe to (monthly) data plan.
 - $x \ge 0$: total numbers of ads to watch per month.
- A type- θ user's payoff is

$$\Pi^{\text{user}}(\theta, \mathbf{r}, \mathbf{x}, \omega) = \underbrace{\theta u \underbrace{\left(\underbrace{Q\mathbf{r} + \omega \mathbf{x}}_{\text{total data}}\right)}_{\text{utility}} - \underbrace{\mathbf{Fr}}_{\text{payment}} - \underbrace{\mathbf{\Phi} \mathbf{x}}_{\text{ads disutility}}$$

- Q > 0: data amount associated with subscription.
- F > 0: data plan subscription fee.
- $\omega \ge 0$: amount of data rewarded for watching one ad (ω will be optimized by operator).
- $\Phi > 0$: disutility of watching one ad.

- We consider K advertisers, and each advertiser decides $m \geq 0$: the total number of ads displayed by the operator per month.
- An advertiser's payoff is

$$\Pi^{\mathrm{ad}}\left(\mathbf{m},\omega,p\right) = \mathbb{E}_{\theta} \left[\underbrace{Bg\left(\mathbf{m},x^{*}\left(\theta,\omega\right)\right) - Ag\left(\mathbf{m},x^{*}\left(\theta,\omega\right)\right)^{2}}_{\mathrm{ads'} \; \mathrm{effectiveness} \; \mathrm{on} \; \mathrm{a} \; \mathrm{type} - \theta \; \mathrm{user}}\right] N - \underbrace{\mathbf{m}p}_{\mathrm{payment}}.$$

- Ad effectiveness on a user is quadratic in $g(m, x^*(\theta, \omega))$.
- $g(m, x^*(\theta, \omega))$: the number of this advertiser's ads seen by a
 - $g(m, x^*(\theta, \omega))$ can be computed under concrete ad displaying
- B, A: parameters describing shape of the quadratic function.
- p: price of displaying one ad (p will be optimized by operator).

Kev Results

- We consider K advertisers, and each advertiser decides $m \geq 0$: the total number of ads displayed by the operator per month.
- An advertiser's payoff is

$$\Pi^{\mathrm{ad}}(\mathbf{m}, \omega, p) = \mathbb{E}_{\theta} \left[\underbrace{Bg(\mathbf{m}, x^*(\theta, \omega)) - Ag(\mathbf{m}, x^*(\theta, \omega))^2}_{\mathrm{ads'} \text{ effectiveness on a type} - \theta \text{ user}} \right] N - \underbrace{\mathbf{m}p}_{\mathrm{payment}}.$$

- Ad effectiveness on a user is quadratic in $g(m, x^*(\theta, \omega))$.
- $g(m, x^*(\theta, \omega))$: the number of this advertiser's ads seen by a
 - $g(m, x^*(\theta, \omega))$ can be computed under concrete ad displaying
- B, A: parameters describing shape of the quadratic function.
- p: price of displaying one ad (p will be optimized by operator).

- We consider K advertisers, and each advertiser decides $m \geq 0$: the total number of ads displayed by the operator per month.
- An advertiser's payoff is

$$\Pi^{\mathrm{ad}}(\mathbf{m}, \omega, p) = \mathbb{E}_{\theta} \left[\underbrace{Bg(\mathbf{m}, x^*(\theta, \omega)) - Ag(\mathbf{m}, x^*(\theta, \omega))^2}_{\mathrm{ads'} \text{ effectiveness on a type} - \theta \text{ user}} \right] N - \underbrace{\mathbf{m}p}_{\mathrm{payment}}.$$

- Ad effectiveness on a user is quadratic in $g(m, x^*(\theta, \omega))$.
- $g(m, x^*(\theta, \omega))$: the number of this advertiser's ads seen by a
 - $g(m, x^*(\theta, \omega))$ can be computed under concrete ad displaying
- B, A: parameters describing shape of the quadratic function.
- p: price of displaying one ad (p will be optimized by operator).

- We consider K advertisers, and each advertiser decides $m \geq 0$: the total number of ads displayed by the operator per month.
- An advertiser's payoff is

$$\Pi^{\mathrm{ad}}(\mathbf{m}, \omega, p) = \mathbb{E}_{\theta} \left[\underbrace{Bg(\mathbf{m}, x^*(\theta, \omega)) - Ag(\mathbf{m}, x^*(\theta, \omega))^2}_{\mathrm{ads'} \text{ effectiveness on a type} - \theta \text{ user}} \right] N - \underbrace{\mathbf{m}p}_{\mathrm{payment}}.$$

- Ad effectiveness on a user is quadratic in $g(m, x^*(\theta, \omega))$.
- $g(m, x^*(\theta, \omega))$: the number of **this advertiser**'s ads seen by a type- θ user. It increases with both m and $x^*(\theta, \omega)$.
 - $g(m, x^*(\theta, \omega))$ can be computed under concrete ad displaying rules. Our work considers random sampling w/o replacement.
- B, A: parameters describing shape of the quadratic function.
- p: price of displaying one ad (p will be optimized by operator).

- We consider K advertisers, and each advertiser decides $m \geq 0$: the total number of ads displayed by the operator per month.
- An advertiser's payoff is

$$\Pi^{\mathrm{ad}}(\mathbf{m}, \omega, \mathbf{p}) = \mathbb{E}_{\theta} \left[\underbrace{Bg(\mathbf{m}, x^*(\theta, \omega)) - Ag(\mathbf{m}, x^*(\theta, \omega))^2}_{\mathrm{ads'} \text{ effectiveness on a type} - \theta \text{ user}} \right] N - \underbrace{\mathbf{m}\mathbf{p}}_{\mathrm{payment}}.$$

- Ad effectiveness on a user is quadratic in $g(m, x^*(\theta, \omega))$.
- $g(m, x^*(\theta, \omega))$: the number of **this advertiser**'s ads seen by a type- θ user. It increases with both m and x^* (θ , ω).
 - $g(m, x^*(\theta, \omega))$ can be computed under concrete ad displaying rules. Our work considers random sampling w/o replacement.
- B, A: parameters describing shape of the quadratic function.
- p: price of displaying one ad (p will be optimized by operator).

- We consider K advertisers, and each advertiser decides $m \geq 0$: the total number of ads displayed by the operator per month.
- An advertiser's payoff is

$$\Pi^{\mathrm{ad}}(\mathbf{m}, \omega, p) = \mathbb{E}_{\theta} \left[\underbrace{Bg(\mathbf{m}, x^*(\theta, \omega)) - Ag(\mathbf{m}, x^*(\theta, \omega))^2}_{\mathrm{ads'} \text{ effectiveness on a type} - \theta \text{ user}} \right] N - \underbrace{\mathbf{m}p}_{\mathrm{payment}}.$$

- Ad effectiveness on a user is quadratic in $g(m, x^*(\theta, \omega))$.
- $g(m, x^*(\theta, \omega))$: the number of **this advertiser**'s ads seen by a type- θ user. It increases with both m and x^* (θ , ω).
 - $g(m, x^*(\theta, \omega))$ can be computed under concrete ad displaying rules. Our work considers random sampling w/o replacement.
- B, A: parameters describing shape of the quadratic function.
- p: price of displaying one ad (p will be optimized by operator).

- The operator decides
 - Unit data reward $\omega \geq 0$: the amount of data that a user receives for watching one ad.
 - Ad price p > 0: the price for displaying one ad.
- The operator solves the following problem:

$$\max_{\omega \geq 0, p > 0} NF \int_{0}^{\theta_{\text{max}}} r^{*}(\theta, \omega) h(\theta) d\theta + \underbrace{Km^{*}(\omega, p)p}_{\text{revenue from subscription}}$$
s.t.
$$N \int_{0}^{\theta_{\text{max}}} (Qr^{*}(\theta, \omega) + \omega x^{*}(\theta, \omega)) h(\theta) d\theta \leq \underbrace{C}_{\text{network capacity}},$$

$$total \ data \ demand$$

$$\underbrace{Km^{*}(\omega, p)}_{\text{output}} \leq \underbrace{N\mathbb{E}_{\theta}\left[x^{*}(\theta, \omega)\right]}_{\text{network capacity}}.$$

Model: Operator

Background

- The operator decides
 - Unit data reward $\omega \geq 0$: the amount of data that a user receives for watching one ad.
 - Ad price p > 0: the price for displaying one ad.
- The operator solves the following problem:

$$\max_{\omega \geq 0, p > 0} \underbrace{NF \int_{0}^{\theta_{\text{max}}} r^{*}(\theta, \omega) h(\theta) d\theta}_{\text{revenue from subscription}} + \underbrace{Km^{*}(\omega, p)p}_{\text{revenue from advertising}}$$
s.t.
$$\underbrace{N \int_{0}^{\theta_{\text{max}}} (Qr^{*}(\theta, \omega) + \omega x^{*}(\theta, \omega)) h(\theta) d\theta}_{\text{total data demand}} \leq \underbrace{N\mathbb{E}_{\theta} \left[x^{*}(\theta, \omega)\right]}_{\text{network capacity}}.$$

total number of displayed ads total number of ads users will watch

Two-Stage Game

Background

Stage I

Operator decides unit data reward ω and ad price p.

Stage II

Users make subscription decisions r, ad watching decisions x. Advertisers decide number of displayed ads m.

- Subscription-Aware Rewarding: x > 0 only if r = 1.
- Subscription-Unaware Rewarding: x > 0, regardless of r.

Stage I

Operator decides unit data reward ω and ad price p.

Stage II

Users make subscription decisions r, ad watching decisions x. Advertisers decide number of displayed ads m.

We compare two data rewarding schemes:

- Subscription-Aware Rewarding: x > 0 only if r = 1.
- Subscription-Unaware Rewarding: x > 0, regardless of r.

IV. Key Results

• Comparison between two rewarding schemes.

Comparison Between SAR and SUR Schemes

When users have logarithmic utility $u(\cdot)$, we have

• Observation: When network capacity C exceeds a threshold, operator should only reward subscribers; otherwise, operator should reward both subscribers and non-subscribers.

Conclusion

- Conclusion: We study the data rewarding ecosystem, and analyze the operator's optimal choice of rewarding scheme.
- Future directions
 - Consider competition between operators;
 - Consider targeted advertising (increasing ad effectiveness and reducing users' disutility).

THANK YOU