Problem 00000000

Model 000000 OUR POLICY

Performance

CONCLUSION

Learning to Price Vehicle Service with Unknown Demand

Haoran Yu¹, Ermin Wei², and Randall A. Berry²

¹School of Computer Science, Beijing Institute of Technology ²Department of Electrical and Computer Engineering, Northwestern University

Oct. 2020 @ACM MobiHoc

Problem	Model	OUR POLICY	Performance	CONCLUSION
•000000				

Problem

• People use vehicle service offered by ride-sharing platforms.

- Location-based pricing: It depends on origin-destination pairs.
 - Purpose: Balance demand and supply.

Example of origin-based charge: price=standard price×multiplier

- Weintroduce a traffic graph to illustrate location-based pricing.
 - Node: location, link: traffic demand.

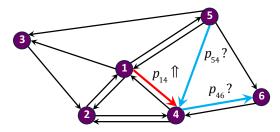
- Provider sets different vehicle service prices for different links. Let *p_{ij}* be the price for link (*i*, *j*) (*i*: origin; *j*: destination).
 - e.g., $p_{13} =$ \$1/minute.
 - Can be converted to \$/mile based on vehicle velocity.
- For each link (*i*, *j*), actual demand changes with *p*_{*ij*}.

- Weintroduce a traffic graph to illustrate location-based pricing.
 - Node: location, link: traffic demand.

- Provider sets different vehicle service prices for different links. Let *p_{ij}* be the price for link (*i*, *j*) (*i*: origin; *j*: destination).
 - e.g., $p_{13} = \frac{1}{\text{minute}}$.
 - Can be converted to \$/mile based on vehicle velocity.
- For each link (i, j), actual demand changes with p_{ij} .

1	D 1 1/-1		Dert et er er	
0000000	000000	0000000	00000	
Problem	Model	OUR POLICY	Performance	CONCLUSION

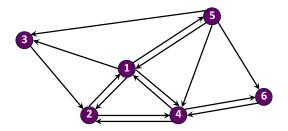
• Optimal pricings for links are coupled due to vehicle flow balance.



- Example: Suppose *p*₁₄ increases. How should provider change other prices?
 - Increase p_{46} : to save supply at node 4.
 - Decrease p_{54} : to increase supply at node 4.
- Provider needs to jointly optimize *p_{ij}* for different links.

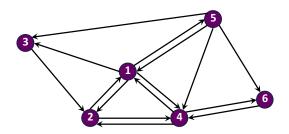
00000000	000000	0000000	00000	00		
Challenge of Unknown Domand						

Challenge of Unknown Demand



- If mapping from price to demand is known:
 - Example: If $p_{12} = 2$, demand = 100; If $p_{12} = 4$, demand = 50.
 - Given all parameters and topology, can calculate p_{ij}^* for all (i, j).

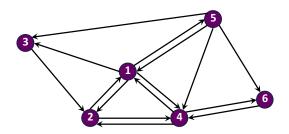
Problem	Model	OUR POLICY	Performance	CONCLUSION
00000000	000000	0000000	00000	00
Challen	te of Unkn	own Deman	d	



• If mapping from price to demand is unknown:

- Example: If $p_{12} = 2$, demand =? If $p_{12} = 4$, demand =?
- Intuitive solution: (i) test many prices $p_{ii}^1, p_{ii}^2, \ldots$ to learn
- Challenge: If do not choose $p_{ii}^1, p_{ii}^2, \ldots$ carefully, the provider's

Problem	Model	OUR POLICY	Performance	CONCLUSION
00000000				
Challen	te of Unkn	own Deman	Ч	



- If mapping from price to demand is unknown:
 - Example: If $p_{12} = 2$, demand =? If $p_{12} = 4$, demand =?
 - Intuitive solution: (i) test many prices $p_{ij}^1, p_{ij}^2, \ldots$ to learn mapping; (ii) derive optimal prices based on learned mapping.
 - Challenge: If do not choose $p_{ii}^1, p_{ii}^2, \dots$ carefully, the provider's payoff at initial stage is low.

Problem 000000●0	Model 000000	OUR POLICY	Performance 00000	Conclusion
Our Work				

- Consider a simplified model with a monopolistic provider.
- Design an online pricing policy:
 - (i) Can learn accurate user demand for each (*i*, *j*);
 - (ii) Achieve asymptotically-optimal provider long-term payoff.

Problem	Model 000000	OUR POLICY	Performance	Conclusion
Related Wo				

- Prior work on vehicle service pricing: [Banerjee *et al.* 2015], [Banerjee *et al.* 2016], [Ma *et al.* 2018], [Bimpikis *et al.* 2019], [Yu *et al.* 2019] etc.
 - Our work: Consider unknown user demand.
- Prior work on pricing with unknown demand: [Besbes and Zeevi 2009], [Broder and Rusmevichientong 2012], [Den Boer and Zwart 2013] [Keskin and Zeevi 2014] [Khezeli and Bitar 2017] etc.
 - Our work: Consider vehicle service, where prices for links are coupled due to vehicle flow balance.
- Prior work on multi-armed bandit problem: [Berry and Fristedt 1985], [Kleinberg 2005], [Vermorel and Mohri 2005], [Wang and Huang 2018] etc.
 - Our work: Consider an infinite decision space.

Рковlем 0000000●	Model 000000	Our Policy	Performance	Conclusion
Related Wo	ork			

- Prior work on vehicle service pricing: [Banerjee *et al.* 2015], [Banerjee *et al.* 2016], [Ma *et al.* 2018], [Bimpikis *et al.* 2019], [Yu *et al.* 2019] etc.
 - Our work: Consider unknown user demand.
- Prior work on pricing with unknown demand: [Besbes and Zeevi 2009], [Broder and Rusmevichientong 2012], [Den Boer and Zwart 2013] [Keskin and Zeevi 2014] [Khezeli and Bitar 2017] etc.
 - Our work: Consider vehicle service, where prices for links are coupled due to vehicle flow balance.
- Prior work on multi-armed bandit problem: [Berry and Fristedt 1985], [Kleinberg 2005], [Vermorel and Mohri 2005], [Wang and Huang 2018] etc.
 - Our work: Consider an infinite decision space.

Рковlем 0000000●	Model 000000	Our Policy 0000000	Performance	Conclusion
Related Wo	ork			

- Prior work on vehicle service pricing: [Banerjee *et al.* 2015], [Banerjee *et al.* 2016], [Ma *et al.* 2018], [Bimpikis *et al.* 2019], [Yu *et al.* 2019] etc.
 - Our work: Consider unknown user demand.
- Prior work on pricing with unknown demand: [Besbes and Zeevi 2009], [Broder and Rusmevichientong 2012], [Den Boer and Zwart 2013] [Keskin and Zeevi 2014] [Khezeli and Bitar 2017] etc.
 - Our work: Consider vehicle service, where prices for links are coupled due to vehicle flow balance.
- Prior work on multi-armed bandit problem: [Berry and Fristedt 1985], [Kleinberg 2005], [Vermorel and Mohri 2005], [Wang and Huang 2018] etc.
 - Our work: Consider an infinite decision space.

Problem	Model	OUR POLICY	Performance	CONCLUSION
	00000			

Model

Рковleм 00000000	Model 0●0000	Our Policy 0000000	Performance	Conclusion
User Dema	nd			

- A monopolistic provider offers service on day d = 1, 2, ...
- Let p_{ij}^d be service price for (i, j) on *d*-th day (\$ per time slot).
- Realized user demand on (*i*, *j*) is

$$\Psi_{ij}^{d}\left(\boldsymbol{p}_{ij}^{d},\epsilon_{ij}^{d}\right) = \alpha_{ij} - \beta_{ij}\boldsymbol{p}_{ij}^{d} + \epsilon_{ij}^{d}.$$

- α_{ij} and β_{ij} are positive parameters that are unknown to provider and need to be learned.
- ϵ_{ij}^d is a zero-mean i.i.d. random variable, capturing demand shock. Provider only knows its distribution.
- On each day, provider can only observe $\Psi_{ij}^d \left(p_{ij}^d, \epsilon_{ij}^d \right)$.
- Assumptions: linear and time-invariant demand.

Рковleм 00000000	Model 0●0000	Our Policy	Performance 00000	Conclusion
User Dema	nd			

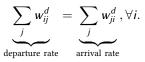
- A monopolistic provider offers service on day d = 1, 2, ...
- Let p_{ii}^d be service price for (i, j) on *d*-th day (\$ per time slot).
- Realized user demand on (*i*, *j*) is

$$\Psi_{ij}^{d}\left(\boldsymbol{p}_{ij}^{d},\epsilon_{ij}^{d}\right) = \alpha_{ij} - \beta_{ij}\boldsymbol{p}_{ij}^{d} + \epsilon_{ij}^{d}.$$

- α_{ij} and β_{ij} are positive parameters that are unknown to provider and need to be learned.
- *ϵ*^d_{ij} is a zero-mean i.i.d. random variable, capturing demand shock. Provider only knows its distribution.
- On each day, provider can only observe $\Psi_{ij}^d \left(p_{ij}^d, \epsilon_{ij}^d \right)$.
- Assumptions: linear and time-invariant demand.

Problem	Model	OUR POLICY	Performance	CONCLUSION
	000000			
Provider	Decisions	and Constra	aints	

- p_{ij}^d : service price for (i, j) (\$ per time slot).
 - Should satisfy $p_{ij}^d \leq p_{\max}$, e.g., due to government regulation.
- w_{ij}^d : vehicle supply for (i, j), i.e., mass of vehicles departing from *i* to *j* per time slot.
 - Should satisfy $w_{ij}^d \ge 0$ and vehicle flow balance:



- This couples the provider's decisions for different links.
- Assumptions: full control over vehicles and consideration of system's steady state.

• Provider's time-average payoff on day *d* in the steady state = user payment per slot - operation cost per slot

$$\Pi\left(\boldsymbol{p}^{d},\boldsymbol{w}^{d},\boldsymbol{\epsilon}^{d}\right) \triangleq \sum_{\substack{(i,j)\\\text{number of users served on link in any slot}} \xi_{ij} \psi_{ij}^{d} \psi_{ij}^{d$$

- ξ_{ij} : travel time from *i* to *j* (measured by number of slots).
- *c*: one vehicle's operation cost per slot.
- $\Psi_{ij}^{d}(p_{ij}^{d}, \epsilon_{ij}^{d})$: realized demand given price and demand shock.

Рковlем 00000000	Model 0000€0	OUR POLICY	Performance 00000	Conclusion
Provider T	arget			

- Provider should choose \boldsymbol{p}^d and \boldsymbol{w}^d in real time to maximize $\lim_{D\to\infty} \mathbb{E}\left\{\frac{1}{D}\sum_{d=1}^{D} \prod\left(\boldsymbol{p}^d, \boldsymbol{w}^d, \boldsymbol{\epsilon}^d\right)\right\}.$
 - Expectation is taken with respect to $\epsilon^1, \ldots, \epsilon^D$ and the possible randomness in the provider policy.

• We design a policy under which provider's time-average payoff converges to the optimal objective value of following problem:

$$\max \mathbb{E}_{\epsilon^{d}} \left\{ \Pi \left(\boldsymbol{p}^{d}, \boldsymbol{w}^{d}, \boldsymbol{\epsilon}^{d} \right) \right\}$$

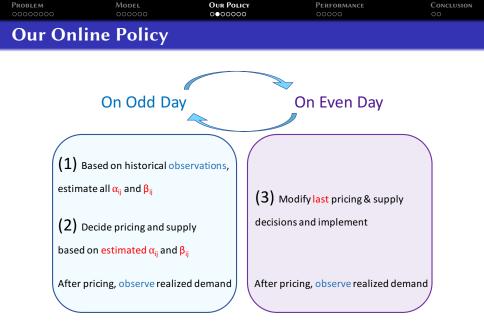
s.t.
$$\sum_{j} w_{ij}^{d} = \sum_{j} w_{ji}^{d}, \forall i,$$
$$w_{ij}^{d} = \mathbb{E}_{\epsilon^{d}_{ij}} \left\{ \Psi_{ij}^{d} \left(\boldsymbol{p}_{ij}^{d}, \epsilon^{d}_{ij} \right) \right\}, \forall i, j$$

var.
$$p_{ij}^{d} \leq p_{\max}, w_{ij}^{d} \geq 0, \forall i, j.$$

- Intuition: Optimal payoff when provider knows all α_{ij} and β_{ij} .
- Assumption: local supply-demand balance.

Problem	Model	OUR POLICY	Performance	CONCLUSION
		000000		

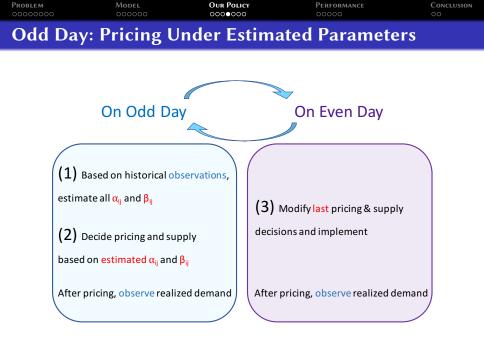
Our Policy



Intuition: balance exploitation and exploration.

• Given historical observations on demand and pricing, estimate α_{ij} and β_{ij} for each (i, j) by least squares estimation:

$$\left(\hat{\alpha}_{ij}^{d-1}, \hat{\beta}_{ij}^{d-1}\right) = \operatorname*{arg\,min}_{\left(\bar{\alpha}_{ij}, \bar{\beta}_{ij}\right)} \sum_{\tau=1}^{d-1} \left(\underbrace{\Psi_{ij}^{\tau}\left(p_{ij}^{\tau}, \epsilon_{ij}^{\tau}\right)}_{\text{observed demand demand under estimation}} - \underbrace{\left(\bar{\alpha}_{ij} - \bar{\beta}_{ij} p_{ij}^{\tau}\right)}_{\text{demand under estimation}}\right)^{2}$$

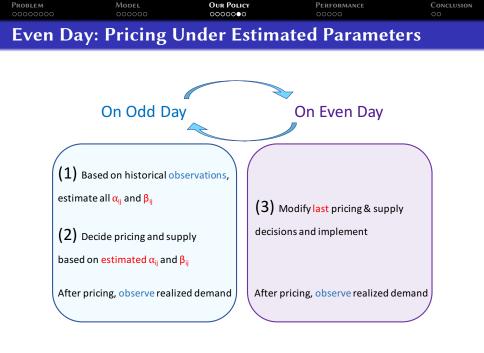


Odd Day: Pricing Under Estimated Parameters

• Provider makes decisions based on estimated parameters $\hat{\alpha}_{ij}^{d-1}, \hat{\beta}_{ij}^{d-1}$:

$$\begin{aligned} \max \sum_{(i,j)} \xi_{ij} \mathbb{E}_{\epsilon_{ij}^{d}} \left\{ \min \left\{ \hat{\alpha}_{ij}^{d-1} - \hat{\beta}_{ij}^{d-1} p_{ij}^{d} + \epsilon_{ij}^{d}, w_{ij}^{d} \right\} \right\} p_{ij}^{d} - \sum_{(i,j)} \xi_{ij} w_{ij}^{d} c \\ \text{s.t.} \quad \sum_{j} w_{ij}^{d} = \sum_{j} w_{ji}^{d}, \forall i, \text{ (vehicle flow balance)} \\ w_{ij}^{d} = \hat{\alpha}_{ij}^{d-1} - \hat{\beta}_{ij}^{d-1} p_{ij}^{d}, \forall i, j, \text{ (local supply demand balance)} \\ \text{var.} \quad p_{ij}^{d} \leq p_{\max}, w_{ij}^{d} \geq 0, \forall i, j. \end{aligned}$$

• After rearrangement, can show problem is convex.



PROBLEM Model OUR Polley PERFORMANCE CONCLUSION 0000000 000000 000000 00000 00 Even Day: Modify Odd Day's Decisions

- Let $p_{ij}^*\left(\hat{\alpha}^{d-2}, \hat{\beta}^{d-2}\right)$ and $w_{ij}^*\left(\hat{\alpha}^{d-2}, \hat{\beta}^{d-2}\right)$ be the decisions on odd day d-1.
- On each even day *d*, for each (*i*, *j*):
 - Implement $p_{ij}^*\left(\hat{\alpha}^{d-2}, \hat{\beta}^{d-2}\right) \frac{\rho}{\hat{\beta}_{ij}^{d-2}} d^{-\eta}$ as the pricing decision.
 - Implement $w_{ij}^*\left(\hat{\alpha}^{d-2}, \hat{\beta}^{d-2}\right) + \rho d^{-\eta}$ as the supply decision.
- $\rho > 0$ and $0 < \eta < \frac{1}{2}$ are controllable parameters.
- Intuition: Adding offset terms facilitates exploring different prices and learning demand parameters.
- The offset terms decay to zero as *d* increases.

Problem	Model	OUR POLICY	Performance	CONCLUSION
			● 0 000	

Performance

Theorem

For all $d \ge 5$ and (i, j):

$$\mathbb{E}\left\{\left|\left(\hat{\alpha}_{ij}^{d-1},\hat{\beta}_{ij}^{d-1}\right)-\left(\alpha_{ij},\beta_{ij}\right)\right|\right|_{2}^{2}\right\} < \Phi_{1}\left(\rho,\eta\right)\frac{\ln\left(d-1\right)}{\left(d-1\right)^{1-2\eta}}.$$

The upper bound approaches zero as *d* goes to infinity.

Рковleм	Model	Our Policy	Performance	Conclusion
00000000	000000	0000000	00●00	
Theoretical	Performar	nce: Time-Av	erage Payoff	

Theorem

For all $D > 4 + e^{\frac{1}{1-2\eta}}$:

$$\mathbb{E}\left\{\frac{1}{D}\sum_{d=1}^{D}\left(\Pi\left(\boldsymbol{p}^{*},\boldsymbol{w}^{*},\boldsymbol{\epsilon}^{d}\right)-\Pi\left(\boldsymbol{p}^{d},\boldsymbol{w}^{d},\boldsymbol{\epsilon}^{d}\right)\right)\right\}$$

< $\Phi_{2}\left(\rho,\eta\right)\boldsymbol{D}^{-1}+\Phi_{3}\left(\rho,\eta\right)\left(\ln\boldsymbol{D}\right)^{\frac{1}{2}}\boldsymbol{D}^{\eta-\frac{1}{2}}+\Phi_{4}\left(\rho,\eta\right)\boldsymbol{D}^{-\eta}.$

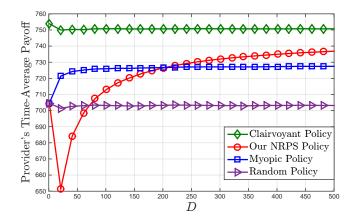
The upper bound approaches zero as *D* goes to infinity.

Problem	Model	OUR POLICY	Performance	CONCLUSION
			00000	
Numorio	al Perform	2000		

- Real-world dataset (DiDi Chuxing GAIA Open Data Initiative).
- Compare our policy with:
 - Clairvoyant policy: make decisions with complete information;
 - Myopic policy: choose decisions without adding offset terms;
 - Random policy: choose decisions based on randomly guessed parameters.
- Can see our paper for comparison with more policies (e.g., perturbed myopic policy).

Problem 00000000	Model 000000	OUR POLICY	Performance 0000●	Conclusion

Numerical Performance



Controllable parameters in our policy: $\rho = 2$ and $\eta = 0.45$.

Problem	Model	OUR POLICY	Performance	CONCLUSION
				•0
Conclusior	n			

• Conclusion

• Propose an effective online pricing and supply policy that balances exploitation and exploration.

• Future directions

- Consider driver side compensation design and learn drivers' willingness to work.
- Use closed-queueing network to model users' stochastic demand.

Problem	Model	OUR POLICY	Performance	CONCLUSION
				00

