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Location-Based Vehicle Service Pricing

People use vehicle service o�ered by ride-sharing platforms.

Location-based pricing: It depends on origin-destination pairs.
Purpose: Balance demand and supply.

Example of origin-based charge:
price=standard price×multiplier
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Location-Based Vehicle Service Pricing

Weintroduce a tra�ic graph to illustrate location-basedpricing.
Node: location, link: tra�ic demand.
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Provider sets di�erent vehicle service prices for di�erent links.
Let pij be the price for link (i, j) (i: origin; j: destination).

e.g., p13 = $1/minute.
Can be converted to $/mile based on vehicle velocity.

For each link (i, j), actual demand changes with pij .
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Location-Based Vehicle Service Pricing

Optimal pricings for links are coupled due to vehicle flow balance.
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p14 ⇑
p46 ?

p54 ?

Example: Suppose p14 increases. How should provider change other
prices?

Increase p46: to save supply at node 4.
Decrease p54: to increase supply at node 4.

Provider needs to jointly optimize pij for di�erent links.
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Challenge of Unknown Demand
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If mapping from price to demand is known:
Example: If p12 = 2, demand = 100; If p12 = 4, demand = 50.
Given all parameters and topology, can calculate p∗ij for all (i, j).
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Challenge of Unknown Demand
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If mapping from price to demand is unknown:
Example: If p12 = 2, demand =? If p12 = 4, demand =?
Intuitive solution: (i) test many prices p1ij, p

2
ij, . . . to learn

mapping; (ii) derive optimal prices based on learned mapping.
Challenge: If do not choose p1ij, p

2
ij, . . . carefully, the provider’s

payo� at initial stage is low.
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Our Work

Consider a simplified model with a monopolistic provider.

Design an online pricing policy:
(i) Can learn accurate user demand for each (i, j);
(ii) Achieve asymptotically-optimal provider long-term payo�.
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Related Work

Prior work on vehicle service pricing: [Banerjee et al. 2015],
[Banerjee et al. 2016], [Ma et al. 2018], [Bimpikis et al. 2019],
[Yu et al. 2019] etc.

Our work: Consider unknown user demand.

Prior work on pricing with unknown demand: [Besbes and
Zeevi 2009], [Broder and Rusmevichientong 2012], [Den Boer
and Zwart 2013] [Keskin and Zeevi 2014] [Khezeli and Bitar
2017] etc.

Our work: Consider vehicle service, where prices for links are
coupled due to vehicle flow balance.

Prior work on multi-armed bandit problem: [Berry and Fristedt
1985], [Kleinberg 2005], [Vermorel and Mohri 2005], [Wang and
Huang 2018] etc.

Our work: Consider an infinite decision space.
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User Demand

A monopolistic provider o�ers service on day d = 1, 2, . . .

Let pdij be service price for (i, j) on d-th day ($ per time slot).

Realized user demand on (i, j) is

Ψd
ij

(
pdij, ε

d
ij

)
= αij − βijpdij + εdij.

αij and βij are positive parameters that are unknown to provider
and need to be learned.
εdij is a zero-mean i.i.d. random variable, capturing demand
shock. Provider only knows its distribution.
On each day, provider can only observe Ψd

ij

(
pdij, ε

d
ij

)
.

Assumptions: linear and time-invariant demand.
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Provider Decisions and Constraints

pdij : service price for (i, j) ($ per time slot).

Should satisfy pdij ≤ pmax, e.g., due to government regulation.

wd
ij : vehicle supply for (i, j), i.e., mass of vehicles departing

from i to j per time slot.
Should satisfy wd

ij ≥ 0 and vehicle flow balance:∑
j

wd
ij︸ ︷︷ ︸

departure rate

=
∑
j

wd
ji︸ ︷︷ ︸

arrival rate

,∀i.

This couples the provider’s decisions for di�erent links.

Assumptions: full control over vehicles and consideration of
system’s steady state.
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Provider Payo�

Provider’s time-average payo� on day d in the steady state
= user payment per slot - operation cost per slot

Π
(
pd ,wd , εd

)
,
∑
(i,j)

ξij min
{

Ψd
ij

(
pdij, ε

d
ij

)
,wd

ij

}︸ ︷︷ ︸
number of users served on link in any slot

pdij −
∑
(i,j)

ξijwd
ij c.

ξij : travel time from i to j (measured by number of slots).
c: one vehicle’s operation cost per slot.
Ψd

ij

(
pdij, ε

d
ij

)
: realized demand given price and demand shock.
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Provider Target

Provider should choose pd and wd in real time to maximize

limD→∞ E
{

1
D

∑D
d=1 Π

(
pd ,wd , εd

)}
.

Expectation is taken with respect to ε1, . . . , εD and the possible
randomness in the provider policy.
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Performance Metric

We design a policy under which provider’s time-average payo�
converges to the optimal objective value of following problem:

maxEεd

{
Π
(
pd ,wd , εd

)}
s.t.

∑
j

wd
ij =

∑
j

wd
ji ,∀i,

wd
ij = Eεdij

{
Ψd

ij

(
pdij, ε

d
ij

)}
, ∀i, j

var. pdij ≤ pmax,wd
ij ≥ 0, ∀i, j.

Intuition: Optimal payo� when provider knows all αij and βij .
Assumption: local supply-demand balance.
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Our Policy
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Our Online Policy

On	Odd	Day On	Even	Day

(1)	Based	on	historical	observations,	
estimate	all	⍺ij and	βij

(2)	Decide	pricing	and	supply	
based	on	estimated ⍺ij and	βij

(3)	Modify	last pricing	&	supply	

decisions	and	implement

After	pricing,	observe realized	demand After	pricing,	observe realized	demand

Intuition: balance exploitation and exploration.
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Odd Day: Demand Parameter Estimation

Given historical observations on demand and pricing, estimate
αij and βij for each (i, j) by least squares estimation:

(
α̂d−1
ij , β̂d−1ij

)
= argmin

(ᾱij ,β̄ij)

d−1∑
τ=1

(
Ψτ

ij

(
pτij, ε

τ
ij

)︸ ︷︷ ︸
observed demand

−
(
ᾱij − β̄ijpτij

)︸ ︷︷ ︸
demand under estimation

)2

.
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Odd Day: Pricing Under Estimated Parameters

On	Odd	Day On	Even	Day

(1)	Based	on	historical	observations,	
estimate	all	⍺ij and	βij

(2)	Decide	pricing	and	supply	
based	on	estimated ⍺ij and	βij

(3)	Modify	last pricing	&	supply	

decisions	and	implement

After	pricing,	observe realized	demand After	pricing,	observe realized	demand
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Odd Day: Pricing Under Estimated Parameters

Provider makes decisions based on estimated parameters α̂d−1
ij , β̂d−1

ij :

max
∑
(i,j)

ξijEεdij
{
min

{
α̂d−1
ij − β̂d−1ij pdij + εdij,w

d
ij

}}
pdij −

∑
(i,j)

ξijwd
ij c

s.t.
∑
j

wd
ij =

∑
j

wd
ji , ∀i, (vehicle �ow balance)

wd
ij = α̂d−1

ij − β̂d−1ij pdij, ∀i, j, (local supply demand balance)

var. pdij ≤ pmax,wd
ij ≥ 0, ∀i, j.

A�er rearrangement, can show problem is convex.
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Even Day: Pricing Under Estimated Parameters

On	Odd	Day On	Even	Day

(1)	Based	on	historical	observations,	
estimate	all	⍺ij and	βij

(2)	Decide	pricing	and	supply	
based	on	estimated ⍺ij and	βij

(3)	Modify	last pricing	&	supply	

decisions	and	implement

After	pricing,	observe realized	demand After	pricing,	observe realized	demand

21 / 29



Problem Model Our Policy Performance Conclusion

Even Day: Modify Odd Day’s Decisions

Let p∗ij
(
α̂d−2, β̂d−2

)
and w∗ij

(
α̂d−2, β̂d−2

)
be the decisions on

odd day d − 1.
On each even day d , for each (i, j):

Implement p∗ij
(
α̂d−2, β̂d−2

)
− ρ

β̂d−2
ij

d−η as the pricing decision.

Implement w∗
ij

(
α̂d−2, β̂d−2

)
+ρd−η as the supply decision.

ρ > 0 and 0 < η < 1
2 are controllable parameters.

Intuition: Adding o�set terms facilitates exploring di�erent
prices and learning demand parameters.

The o�set terms decay to zero as d increases.
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Performance
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Theoretical Performance: Squared Estimation Error

Theorem
For all d ≥ 5 and (i, j):

E
{
||
(
α̂d−1
ij , β̂d−1ij

)
−
(
αij, βij

)
||22
}
< Φ1 (ρ, η)

ln (d − 1)

(d − 1)1−2η
.

The upper bound approaches zero as d goes to infinity.
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Theoretical Performance: Time-Average Payo�

Theorem

For all D > 4 + e
1

1−2η :

E

{
1
D

D∑
d=1

(
Π
(
p∗,w∗, εd

)
−Π

(
pd ,wd , εd

))}
<Φ2 (ρ, η)D−1 + Φ3 (ρ, η) (lnD)

1
2Dη−

1
2 + Φ4 (ρ, η)D−η.

The upper bound approaches zero as D goes to infinity.
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Numerical Performance

Real-world dataset (DiDi Chuxing GAIA Open Data Initiative).
Compare our policy with:

Clairvoyant policy: make decisions with complete information;
Myopic policy: choose decisions without adding o�set terms;
Random policy: choose decisions based on randomly guessed
parameters.

Can see our paper for comparison with more policies (e.g.,
perturbed myopic policy).
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Numerical Performance
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Controllable parameters in our policy: ρ = 2 and η = 0.45.
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Conclusion

Conclusion
Propose an e�ective online pricing and supply policy that
balances exploitation and exploration.

Future directions
Consider driver side compensation design and learn drivers’
willingness to work.
Use closed-queueing network to model users’ stochastic
demand.
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