Coopetition between LTE Unlicensed and Wi-Fi: A Reverse Auction with Allocative Externalities

Haoran Yu¹, George Iosifidis², Jianwei Huang¹, and Leandros Tassiulas²

¹Department of Information Engineering, The Chinese University of Hong Kong
²Dept. of Electrical Engineering, and the Yale Inst. for Network Science, Yale University

Background

- Spectrum resources
 - ► Licensed spectrum: network providers pay the government for licenses and use the spectrum exclusively (e.g., conventional LTE network)
 - ► Unlicensed spectrum: network providers share the spectrum without licenses (e.g., Wi-Fi network)
- LTE unlicensed technology
 - ▶ Description: operate the LTE network also in the unlicensed spectrum
 - ▶ Reason: limited licensed spectrum vs. explosive data growth

Key Challenge: Coexistence with Wi-Fi

Throughputs of LTE & Wi-Fi On Unlicensed Channel ©Nokia

- Observations
 - (1) LTE unlicensed has a higher spectrum efficiency than Wi-Fi;
 - (2) Co-channel interference decreases the throughputs of both networks, especially the throughput of Wi-Fi;
 - (3) Recent studies proposed coexistence mechanisms to achieve fair sharing between LTE and Wi-Fi, but cannot avoid inefficiency.
- Problem: How to avoid the throughput loss in LTE and Wi-Fi due to the co-channel interference between these two networks?

Why Not Avoid Interference Through Cooperation

Previous works studied LTE/Wi-Fi coexistence mechanisms (competition), and didn't consider the cooperation between LTE and Wi-Fi.

Competition

LTE and AP share the same channel based on a coexistence mechanism (studied by previous works)

Cooperation:

LTE serves AP's traffic in exchange for the exclusive use of the channel

Illustration for one AP case

Our LTE/Wi-Fi Coopetition Framework

 Basic idea: explore the potential benefits of cooperation before deciding whether to enter head-to-head competition

- Challenge: incomplete information complicates the coordination
 - ► Each network's (LTE or AP) throughput is its private information
- Mechanism: Second-price reverse auction
 - ▶ Will not reveal the private information of networks

System Model

- We consider one LTE network and two APs (different channels)
 - ▶ Results can be generalized to the case with an arbitrary number of APs
- LTE network
 - ► *R*_{LTE}: throughput without interference
 - $\delta^{\rm LTE} \in (0,1)$: data rate discounting factor due to interference
 - $lacktriangleright R_{
 m LTE}$ and $\delta^{
 m LTE}$ can be either known or unknown to the APs
- AP k (k = 1, 2) occupies channel k
 - ▶ $r_k \in [r_{\min}, r_{\max}]$: throughput without interference, follows a general distribution with PDF $f(\cdot)$ and CDF $F(\cdot)$
 - $\eta^{\rm AP} \in (0,1)$: data rate discounting factor due to interference
 - $ightharpoonup r_k$ is AP k's private information;
 - $r_{\min}, r_{\max}, f(\cdot), F(\cdot), \text{ and } \eta^{\text{AP}}$ are common knowledge

Second-Price Reverse Auction

- Key idea
 - ▶ LTE is the buyer (auctioneer), and APs are the sellers (bidders)
 - ▶ APs "sell" the exclusive access rights of their channels to LTE
 - ▶ LTE's "payment" is the allocated data rate to the winning AP
- Auction procedures
 - ► Stage I: LTE announces the reserve rate *C*, *i.e.*, the maximum rate that LTE is willing to allocate to the winner
 - ▶ Stage II: AP k's submits its bid $b_k \in [0, C] \cup \{\text{"N"}\}$:
 - ★ if $b_k \in [0, C]$: AP k sells its channel with an asking rate b_k
 - * if $b_k = \{ \text{"N"} \}$: AP k does not want to sell its channel

Second-Price Reverse Auction

Auction outcome:

- When $b_1 = b_2 = \{\text{"N"}\}$, LTE randomly picks channel i (i = 1, 2) with an equal probability and coexists with AP i (competition)
- Otherwise, the AP with the lower bid becomes the winner, and sells its channel to the LTE with the second lowest rate from $\{b_1, b_2, C\}$ (cooperation)

Allocative Externalities in Our Auction

- Comparison with conventional auction
 - Conventional auction: if a bidder loses the auction, it does not care whether the other bidder wins the auction
 - ► Our auction: if an AP loses the auction, it is more willing to see the other AP winning rather than losing the auction
- Positive allocative externalities: the cooperation between LTE and an AP benefits the other AP

An Example Showing Allocative Externalities

Auction Analysis

Two-Stage Structure
 Each network (LTE or AP) maximizes the data rate its users receive

- Backward Induction
 - For Stage II, we characterize the APs' unique symmetric equilibrium strategy $b^*(r_k, C)$ under the LTE's reserve rate C in Stage I
 - ▶ For Stage I, we characterize the LTE's optimal reserve rate C^* by anticipating APs' equilibrium strategy $b^*(r_k, C)$ in Stage II

Stage II: APs' Bidding $b^*(r_k, C)$ at Equilibrium

Results:

- $b^*(r_k, C)$ has four different forms based on the intervals of C
- As C increases, more AP types are willing to cooperate with LTE

APs' Equilibrium Bidding Based on Different Intervals of C

Stage II: APs' Bidding $b^*(r_k, C)$ at Equilibrium

Unique feature due to allocative externalities

- Description: When $C \in \left(\frac{1+\eta^{\mathrm{AP}}}{2}r_{\mathrm{min}}, r_{\mathrm{max}}\right)$, some AP types bid C
- Reason
 - Worst situation for these AP types: no AP wins the auction → bid from [0, C] to guarantee the LTE can find someone to cooperate with
 - ▶ Best situation for these AP types: other AP wins the auction \rightarrow bid the highest value, *i.e.*, C, from [0, C] to reduce the chance of winning

APs' Equilibrium Bidding Based on Different Intervals of C

Stage I: LTE's Optimal Reserve Rate C*

Analytical results

LTE can't satisfy any AP LTE can satisfy APs with small bids LTE can satisfy any AP

LTE's Optimal Reserve Rate Based on Different Intervals of R_{LTE}

- Numerical results: the LTE chooses a large C* when:
 - (1) the LTE has a large throughput (large R_{LTE});
 - (2) the LTE is heavily affected by the interference (small $\delta^{\rm LTE}$);
 - (3) the APs are not heavily affected by the interference (large $\eta^{\rm AP}$).

Conclusion and Future Work

- Conclusion
 - Proposal of the LTE/Wi-Fi coopetition framework
 - ▶ APs' equilibrium analysis in an auction with allocative externalities
 - ► Characterization of the LTE's optimal reserve rate
- Future work
 - ightharpoonup APs use different channels ightharpoonup can use the same channel
 - ★ Need to consider the interference among APs
 - ► One LTE provider → multiple LTE providers
 - ★ Need to consider the externalities among LTE providers

THANK YOU

